當前醫療行業、能源行業、通信行業、零售業、金融行業、體育行業等各行業都可以從其數據的采集、傳輸、存儲、分析等各個環節產生巨大的經濟價值,而提供大數據基礎設施的企業、大數據軟件技術服務的企業、行業大數據內容咨詢服務的企業都將從大數據的廣泛應用而得到迅速發展。
學習大數據可以從事很多工作,比如說:hadoop 研發工程師、大數據研發工程師、大數據分析工程師、數據庫工程師、hadoop運維工程師、大數據運維工程師、java大數據工程師、spark工程師等等都是我們可以從事的工作崗位!不同的崗位,所具備的技術知識也是不一樣的,需要從各個方向學習,逐個擊破!
比如說:Hadoop開發工程師
你需要具備一下技術:
a. 基于hadoop、hive等構建數據分析平臺,進行數據平臺架構設計、開發分布式計算業務;
b. 應用大數據、數據挖掘、分析建模等技術,對海量數據進行挖掘,發現其潛在的關聯規則;
c. 對hadoop、hive、hbase、Map/Reduce相關產品進行預研、開發;
d. 通過Hadoop相關技術解決海量數據處理問題、大數據量的分析。
e. Hadoop相關業務腳本的性能優化與提升,不斷提高系統運行效率;
數據工程師
職責:
a. 分析各類用戶不斷變化的行為;
b. 預測各類營銷對用戶的影響,定位精準市場投放;
c. 幫助實現自動化監控平臺。
Hadoop運維工程師
你需要具備以下技術知識:
a. 平臺大數據環境的部署維護和技術支持;
b. 應用故障的處理跟蹤及統計匯總分析;
c. 應用安全,數據的日常備份和應急恢復;
數據挖掘分析師
你需要具備以下技術:
a.對優先考慮的賬戶進行統計分析,從而更大限度的成功化。
b.與主管或客戶端溝通行動計劃,并找出需要改進的地方。
c.執行戰略數據分析和研究,以支持業務需求。
d.找準機會從而用復雜的統計建模提高生產率。
e.瀏覽數據來認準機會并提高業務成效。
f.指定業務流程,目標和戰略的理解,以提供分析和解釋。
g. 針對內部討論的理解,在適當情況下獲得業務需求和必要的分析。
正所謂,術業有專攻,即使同為大數據技術,也是有不一樣的,主要還是看自己感興趣的方向!