隨著我國汽車保有量在近年來急劇增加,交通擁堵、交通污染日益嚴重,交通事故頻繁發生,這些都成為了各大城市亟待解決的交通管理問題。智能交通成為改善城市交通的關鍵所在。為此,及時、準確獲取交通數據并構建交通數據處理模型是建設智能交通的前提,而這一難題可以通過大數據技術得到解決。
智能交通需求與大數據契合
智能交通整體框架主要包括物理感知層、軟件應用平臺及分析預測及優化管理的應用。其中物理感知層主要是對交通狀況和交通數據的感知采集;軟件應用平臺是將各感知終端的信息進行整合、轉換處理,以支撐分析預警與優化管理的應用系統建設;分析預測及優化管理應用主要包括交通規劃、交通監控、智能誘導、智能停車等應用系統。
系統利用先進的視頻監控、智能識別和信息技術手段,增加可管理空間、時間和范圍,不斷提升管理廣度、深度和精細度。整個系統由信息綜合應用平臺、信號控制系統、視頻監控系統、智能卡口系統、電子警察系統、信息采集系統、信息發布系統等組成。以達到四方面的目標:提高通行能力、減少交通事故、打擊違章事件、出行信息服務。
在各城市建設智慧交通的過程中,將產生越來越多的視頻監控、卡口電警、路況信息、管控信息、營運信息、GPS定位信息、RFID識別信息等數據,每天產生的數據量可以達到PB級別,并且呈現指數級增長。
大數據用于智能交通的積極意義
第一,大數據的虛擬性可以解決跨越行政區域的限制。交通大數據的虛擬性,有利于其信息跨越區域管理,只要多方共同遵照相關的信息共享原則,就能在已有的行政區域下解決跨域管理問題。
第二,大數據具有信息集成優勢和組合效率。大數據有助于建立綜合性立體的交通信息體系,通過將不同范圍、不同區域、不同領域的“數據倉庫”加以綜合,構建公共交通信息集成利用模式,發揮整體性交通功能,這樣才能發現新價值,帶來新機會。例如氣象、交通、保險部門的數據結合起來,可高效率地研究交通領域防災減災;IC卡數據結合抽樣調查,能更快捷、更精確測得城市交通流分布狀況。
第三,大數據的智能性能較好的配置交通資源。通過對大數據的分析處理,可以輔助交通管理制定出較好的統籌與協調解決方案。一方面減少各個交通部門運營的人力和物力,另一方面可有些提升道理交通資源的合理利用。如根據大數據結果確定多模式地面公交網絡高效配置和客流組織方案,多層次地面公交主干網絡綠波通行控制以及交通信號自適應控制。
第四,大數據的快速性和可預測性能提升交通預測的水平。在對各個部門的數據進行準確提煉和構建合適的交通預測模型后,可以有效模擬交通未來運行狀態,驗證技術方案的可行性。而在實時交通預測領域,大數據的快速信息處理能力,對于車輛碰撞、車輛換道、駕駛員行為狀態檢測等實時預測也有非常高的可靠性。
第五,提高交通運行效率。大數據技術能促進提高交通運營效率、道路網的通行能力、設施效率和調控交通需求分析。交通的改善所涉及工程量較大,而大數據的大體積特性有助于解決這種困境。
大數據的實時性,使處于靜態閑置的數據被處理和需要利用時,即可被智能化利用,使交通運行的更加合理。大數據技術具有較高預測能力,可降低誤報和漏報的概率,隨時針對交通的動態性給予實時監控。因此,在駕駛者無法預知交通的擁堵可能性時,大數據亦可幫助用戶預先了解。
第六,提高交通安全水平。主動安全和應急救援系統的廣泛應用有效改善了交通安全狀況,而大數據技術的實時性和可預測性則有助于提高交通安全系統的數據處理能力。在駕駛員自動檢測方面,駕駛員疲勞視頻檢測、酒精檢測器等車載裝置將實時檢測駕車者是否處于警覺狀態,行為、身體與精神狀態是否正常。同時,聯合路邊探測器檢查車輛運行軌跡,大數據技術快速整合各個傳感器數據,構建安全模型后綜合分析車輛行駛安全性,從而可以有效降低交通事故的可能性。在應急救援方面,大數據以其快速的反應時間和綜合的決策模型,為應急決策指揮提供輔助,提高應急救援能力,減少人員傷亡和財產損失。
第七,提供環境監測方式。大數據技術在減輕道路交通堵塞、降低汽車運輸對環境的影響等方面有重要的作用。通過建立區域交通排放的監測及預測模型,共享交通運行與環境數據,建立交通運行與環境數據共享試驗系統,大數據技術可有效分析交通對環境的影響。同時,分析歷史數據,大數據技術能提供降低交通延誤和減少排放的交通信號智能化控制的決策依據,建立低排放交通信號控制原型系統與車輛排放環境影響仿真系統。
在當前大數據時代,數據充斥所帶來的影響遠遠超出了企業領域,其不僅能帶來商業價值,亦能產生社會價值。隨著信息通訊技術的發展,交通運輸從數據貧乏的困境轉向數據豐富的環境,而面對眾多的交通數據,如何從中根據用戶需求提取有效數據成為關鍵所在。但是,大數據技術在智能交通應用領域同樣面臨著巨大挑戰,包括隱私,數據處理硬件設施、數據不完備性、模型有效性等領域,這些都是我們未來繼續需要探討和解決的問題。