經歷了第一次泡沫、寒冬時期、研究重啟的AI技術,目前的突破點在基礎層AI芯片的更新中。AI到底能不能超越現在順利達到深度學習的高標準,還是有待商榷和驗證的。
簡史
“人工智能”的術語1956年便誕生,由三位科學家John McCarthy、Claude Shannon and Marvin Minsky在英國達特茅斯會議上提出。當時那個年代末期,Arthur Samuel創造了“機器學習”的概念,指能夠從錯誤中學習的程序,這個程序甚至能夠在跳棋等游戲中表現勝過編程的人。
計算機技術的飛速進步使研究者相信,AI可很快解決。科學家們在研究基于人類大腦功能計算是否能解決實際生活中的問題過程中,創造了“神經網絡”的理念。
1970年,科學家Marvin Minsky在《生活周刊》采訪中表示,3至8年內,將有望出現一臺與人類平均智力相當的機器。
上世紀80年代,AI走出了實驗室并走向商業化,還掀起了AI投資狂潮。當AI相關的科技股泡沫破滅后,AI又重新回到實驗室。“AI寒冬”到來。業內人士認為,當時發展AI技術過于超前,甚至此技術永遠都無法普及。
AI芯片的過去、現在與未來
1986年,神經網絡之父Geoffrey Hinton和其他研究人員發表了一篇里程碑式的報告,報告探討了在“反向傳播”算法如何使深層神經網絡反應更出色。
1989年,深度學習三巨頭之一的美國計算機科學家楊立昆(Yann LeCun)與當時他在貝爾實驗室的同事通過培養能夠識別手寫ZIP碼的神經系統而驗證了一個AI理論在真實生活中的可行性。
2009年,斯坦福大學的Rajat Raina、Anand Madhavan和Andrew Ng發表了論文,論證了現代GPU的深度學習能力遠遠超過CPU。AI大軍似乎卷土重來了。
現在
為什么現在投資界都在聊AI,說到底驅動因素是計算機技術成熟,海量數據容易獲得,一旦研究者有了這些資源,算法與解決方案也就不是天方夜譚。
但AI芯片的最大挑戰是,如何在系統級的芯片中,將以上資源協調在一起,而且系統級的芯片是以硬件加速器為載體的。
所以AI芯片的設計要求很高,尤其是在汽車行業,對安全和可靠性的標準一點都不能降低。
谷歌和特斯拉這樣的公司對集成電路設計也許還并不成熟,而AI Movie、Horizon Robotics等AI初創企業雖然對機器學習有很深造詣,但要完成高水準的系統級芯片研發也很困難。
以汽車前置攝像頭中的深度學習AI芯片加速器為例,此芯片主要用途是為了分析和檢測道路上的車輛、物體。每個AI芯片都帶有記憶文件以確保最大的帶寬。
芯片內互聯機制必須在檢測到物體時保證較寬的帶寬,并且在沒有遇到物體,優化能源耗損時分配較窄的帶寬。而優化的手段就是更新更高級的算法。這樣的AI算法每天都要更新或升級一次。
如果把現在的深度算法芯片比作香蕉,那么沒人愿意保留爛了的香蕉。其實AI芯片中舊算法就好比爛香蕉。所以對AI芯片來說,問世時間比其他類別的半導體更加敏感。
未來
除了深度學習和神經網絡大幅推動了AI技術的進程,仍有很多研究者認為,如果AI要達到更好的要求,還需要更多的方法去支持AI芯片。
大多數AI芯片的設計目前只是基于楊立昆和Hinton等學者的理論而研發出的不同版本,但如果一直沿著這一條軌道前進,AI技術無法有更大的實質突破,更不用說用AI完全替代人類思維。
目前AI技術還是要建立在“標簽化”數據的基礎上的,它無法完成一個與歷史經驗毫無關聯的任務。神經網絡也并沒有將已有知識與陌生規則(例如,“向上”的對立面是“向下”、孩子由父母生育等事實)。
AI技術現在還不能根據沒有標簽的數據解決問題,好比一個人即使沒被燙過,也不會主動去碰點燃的火爐,AI卻還做不到。即使通過“標簽化”的數據學習,數據樣本也要足夠大。
AI芯片似乎沒能表現得比人類更智能,但它們的學習能力很強,未來可以變得更聰明。算法和芯片系統的設計都可以進步,這需要AI芯片具備更高級的記憶系統和連接機制,以及承載深度學習數據流的硬件加速器。