隨著大數據滲透進各行各業,負責淘洗數據、從中精煉價值的數據科學家無疑是這幾年最炙手可熱的職位,《哈佛商業評論》將之譽為「21 世紀最性感工作」1,因為優異的數據科學家就像獨角獸一樣珍貴難尋,而且可不是只有科技公司在搶人,傳統金融界、零售商、廣告、教育,幾乎所有產業都需要數據科學家從大量數據中萃取精華。根據去年七月 Indeed.com 的調查,美國數據科學家每年均薪 12.3 萬美金2,比起整體均薪多出 113%——當然,還是比每年平均可以領 74 萬美金的 CEO 還少,但也夠讓 99.99% 的上班族望塵莫及。
能領這么驚人的薪資,數據科學家的本領真的不是三言兩語就能講完。但是到底什么是數據科學家?頂尖的數據科學家最好統計、數學、程式能力最好都要掌握,而且要能從中洞察意義,并且擁有非凡的直覺,用數據數據發聲,幫助公司制定重大決策。但是,其實就算同樣都是尋找「數據科學家」,Google 跟沃爾瑪超市要的人才,可能非常不一樣。別因你好像缺了哪個專長而打退堂鼓,如果仔細閱讀每家公司張貼的職缺敘述,你會發現說不定現有的技能就能進入數據科學的殿堂。Airbnb 數據科學家 Dave Holtz 把市場上所需的數據科學家概括成以下四類3:
四種數據科學家
菜鳥數據科學家說穿了就是數據分析師
有些公司需要的數據科學家,說白話就是數據分析師(data analyst),而數據分析師就是菜鳥數據科學家。你的工作包括從 MySQL 萃取數據或是一名 Excel 專家,也許要能繪制基礎的數據視覺圖表、分析 A/B 測試的結果或者管理公司的 Google Analytics 帳號。這種公司對抱負遠大的數據科學家來說,是很不錯的練功場所,當你變成老手了,也能開始嘗試新事物,擴充技能組合。
來清理我們亂糟糟的數據!
公司發展到了一定規模之後,累積一堆尚未理清的數據,而且持續大幅增加,因此他們會需要一個能夠建立數據基本設施(data infrastrucure)的人,以讓他們在這個基礎上繼續成長。由於你是第一個或第一批獲聘的數據相關人員,工作通常不會太難,不求統計學家或機器學習專家才能勝任。在這種公司里面,帶有軟體工程背景的數據科學家就很吃香了,重點任務是提供數據到 production code,關於數據的洞見與分析倒是其次。就像前面說的,你是這家公司的第一個數據探勘者,通常你不會獲得太多上層的支援,雖然反而更有機會大放異彩,不過因為比較缺乏真正的挑戰,也有可能面臨停滯不前的窘境。
我們就是數據,數據就是我們
也有很多公司,主要的產品就是數據(或數據分析平臺)。如果你想進入這種公司,那你勢必要具備很高深的數據分析或機器學習功力。完美的人選應該是有正規的數學、統計、物理背景,而且有意繼續朝學術面鉆研。這些數據科學家的主要職責在於研發出色的數據產品,而非解答公司的營運問題。擁有大量消費者數據也以此作為主要營利來源的公司、或者提供基於數據的服務的公司,都歸屬此類。
產品并非數據、卻以數據驅動產品的公司
很多公司都屬這種類型。你可能會加入一組已經建立的數據科學家團隊,這家公司很重視數據,但稱不上一家數據公司。你既要能夠進行數據分析、接觸 production code、也能將數據視覺化。一般來說,這種公司要的人才要不是通才,就是他們團隊缺乏的某種特殊專才,比如數據視覺化或機器學習。想要通過這類公司的考驗,端看你對「大數據(比如 Hive 或 Pig)」工具的熟稔程度,以及過往處理雜亂無章數據的經驗。
現在,你了解「數據科學家」的定義很浮動,即使公司開缺都以「數據科學家」為名,但是他們要找的人其實不太一樣,不一樣的技能組合、不一樣專長、不一樣的經驗層級,卻都能夠稱之「數據科學家」,因此找工作時,務必詳讀職位描述,搞清楚你會進入什么樣的團隊、發展什么樣的技能。
連載閱讀:攻克大數據——「數據科學家」的八種技能(下)
原文鏈接:http://www.thebigdata.cn/YeJieDongTai/14259.html