在“患病多年”后,摩爾定律于51歲“壽終正寢”。
《自然》雜志刊文稱,將于下月發(fā)布的下一份半導(dǎo)體技術(shù)路線圖將采用完全不同的方法。早在2014年,國際半導(dǎo)體技術(shù)路線圖組織已經(jīng)決定,下一份路線圖將不再依照摩爾定律。
1965年,英特爾聯(lián)合創(chuàng)始人戈登-摩爾(Gordon Moore)觀察到,集成電路中的元件集成度每12個月就能翻番。此外,確保每晶體管價格最低的單位芯片晶體管數(shù)量每12個月增長一倍。1965年,單位芯片50個晶體管可以帶來最低的每晶體管成本。摩爾預(yù)計,到1970年,單位芯片可集成1000個元件,而每晶體管成本則將下降90%。
在對數(shù)據(jù)進行提煉和簡化之后,這一現(xiàn)象就被稱作“摩爾定律”:單位芯片晶體管數(shù)量每12個月增長一倍。
摩爾的觀察并非基于任何科學(xué)或工程原理。這僅僅反映了行業(yè)發(fā)展趨勢。然而,在隨后的發(fā)展中,半導(dǎo)體行業(yè)并沒有將摩爾定律當(dāng)作描述性、預(yù)測性的觀察,而是視為規(guī)定性、確定性的守則。整個行業(yè)必須實現(xiàn)摩爾定律預(yù)測的目標(biāo)。
然而,實現(xiàn)這一目標(biāo)無法依靠僥幸。芯片開發(fā)是一個復(fù)雜過程,需要用到來自多家公司的機械、軟件和原材料。為了確保所有廠商根據(jù)摩爾定律制定同樣的時間表,整個行業(yè)遵循了共同的技術(shù)發(fā)展路線圖。由英特爾、AMD、臺積電、GlobalFoundries和IBM等廠商組成的行業(yè)組織半導(dǎo)體協(xié)會從1992年開始發(fā)布這樣的路線圖。1998年,半導(dǎo)體行業(yè)協(xié)會與全球其他地區(qū)的類似組織合作,成立了“國際半導(dǎo)體技術(shù)路線圖”組織。最近的一份路線圖于2013年發(fā)布。
摩爾定律提出的預(yù)測早在很久之前就已出現(xiàn)過問題。1975年,摩爾本人更新了摩爾定律,將半導(dǎo)體行業(yè)的發(fā)展周期從12個月增加至24個月。在隨后30年中,通過縮小芯片上元件的尺寸,芯片發(fā)展一直遵循著摩爾定律。
摩爾定律的終結(jié)
然而到00年代,很明顯單純依靠縮小尺寸的做法正走到尾聲。不過,通過其他一些技術(shù),芯片的發(fā)展仍然符合摩爾定律的預(yù)測。在90納米時代,應(yīng)變硅技術(shù)問世。在45納米時代,一種能提高晶體管電容的新材料推出。在22納米時代,三柵極晶體管使芯片性能變得更強大。
不過,這些新技術(shù)也已走到末路。用于芯片制造的光刻技術(shù)正面臨壓力。目前,14納米芯片在制造時使用的是193納米波長光。光的波長較長導(dǎo)致制造工藝更復(fù)雜,成本更高。波長13.5納米的遠紫外光被認(rèn)為是未來的希望,但適用于芯片制造的遠紫外光技術(shù)目前仍需要攻克工程難題。
即使遠紫外光技術(shù)得到應(yīng)用,目前也不清楚,芯片集成度能有多大的提高。如果縮小至2納米,那么單個晶體管將只有10個原子大小,而如此小的晶體管可靠性很可能存在問題。即使這些問題得到解決,功耗也將繼續(xù)造成困擾。隨著晶體管的連接越來越緊密,芯片功耗將越來越大。
應(yīng)變硅和三柵極晶體管等新技術(shù)歷經(jīng)了10多年的研究才得到商用。遠紫外光技術(shù)被探討的時間更長。而成本因素也需要考慮。相應(yīng)于摩爾定律,我們還有一個洛克定律。根據(jù)后一定律,芯片制造工廠的成本每4年就會翻番。新技術(shù)的發(fā)展可能將帶來更高的芯片集成度,但制造這種芯片的工廠將有著高昂的造價。
近期,我們已經(jīng)看到這些因素給芯片公司造成了現(xiàn)實問題。英特爾原計劃于2016年在Cannonlake處理器中改用10納米工藝,這小于當(dāng)前Skylake芯片采用的14納米工藝。去年7月,英特爾調(diào)整了計劃。根據(jù)新計劃,英特爾將推出另一代處理器Kaby Lake,并沿用此前的14納米工藝。Cannonlake和10納米工藝仍在計劃之中,但被推遲至2017年下半年發(fā)布。
與此同時,新增的晶體管變得越來越難用。80至90年代,新增晶體管帶來的價值顯而易見。奔騰處理器的速度遠高于486處理器,而奔騰2代又遠好于奔騰1代。只要處理器升級,計算機性能就會有明顯的提升。然而在進入00年代之后,這樣的性能提升逐漸變得困難。受發(fā)熱因素影響,時鐘頻率無法繼續(xù)提高,而單個處理器核心的性能只能實現(xiàn)增量式增長。因此,我們看到處理器正集成更多核心。從理論上來說,這提升了處理器的整體性能,但這種性能提升很難被軟件所利用。
半導(dǎo)體行業(yè)的新路線圖
這一系列困難表明,由摩爾定律驅(qū)動的半導(dǎo)體行業(yè)發(fā)展路線圖即將終結(jié)。但摩爾定律日薄西山并不意味著半導(dǎo)體行業(yè)進步的終結(jié)。
愛荷華州大學(xué)的計算機科學(xué)家丹尼爾-里德(Daniel Reed)打了個比方:“想一想飛機行業(yè)發(fā)生了什么,一架波音787并不比上世紀(jì)50年代的707快多少,但是它們?nèi)匀皇欠浅2煌膬煞N飛機。”比如全電子控制和碳纖維機身。“創(chuàng)新絕對會繼續(xù)下去,但會更細致和復(fù)雜。”
2014年,國際半導(dǎo)體技術(shù)路線圖組織決定,下一份路線圖將不再依照摩爾定律。《自然》雜志刊文稱,將于下月發(fā)布的下一份路線圖將采用完全不同的方法。
新的路線圖不再專注于芯片內(nèi)部技術(shù),而新方法被稱作“比摩爾更多”。例如,智能手機和物聯(lián)網(wǎng)的發(fā)展意味著,多樣化的傳感器和低功耗處理器的重要性將大幅提升。用于這些設(shè)備的高集成度芯片不僅需要邏輯處理和緩存模塊,還需要內(nèi)存和電源管理模塊,用于GPS、移動網(wǎng)絡(luò)和WiFi網(wǎng)絡(luò)的模擬器件,甚至陀螺儀和加速計等MEMS器件。
以往,這些不同類型的器件需要用到不同的制造工藝,以滿足不同需求。而新路線圖將提出,如何將這些器件集成在一起。整合不同制造工藝、處理不同原材料需要新的處理和支持技術(shù)。如果芯片廠商希望為這些新市場開發(fā)芯片,那么解決這些問題比提高芯片集成度更重要。
此外,新的路線圖還將關(guān)注新技術(shù),而不僅是當(dāng)前的硅CMOS工藝。英特爾已宣布,在達到7納米工藝之后,將不再使用硅材料。銻化銦和銦鎵砷化合物都有著不錯的前景。與硅相比,這些材料能帶來更快的開關(guān)速度,而功耗也較低。碳材料,無論是碳納米管還是石墨烯,也在繼續(xù)被業(yè)內(nèi)研究。
在許多備選材料中,二維材料“石墨烯”被看好。這種自旋電子材料通過翻轉(zhuǎn)電子自旋來計算,而不是通過移動電子。這種“毫伏特”量級(操作電壓比“伏特”量級的晶體管要低得多)的電子開關(guān)比硅材料開關(guān)的速度更快,而且發(fā)熱量更小。不幸的是這種電子材料還未走出實驗室。
盡管優(yōu)先級下降,但縮小尺寸提高集成度的做法并未被徹底拋棄。在三柵極晶體管的基礎(chǔ)上,到2020年左右,“柵極全包圍”晶體管和納米線將成為現(xiàn)實。而到20年代中期,我們可能將看到一體化3D芯片的出現(xiàn),即在一整塊硅片上制作多層器件。
斯坦福大學(xué)的電氣工程師Subhasish Mitra和他的同事已經(jīng)開發(fā)出用碳納米管將3D存儲單元層連接起來的辦法,這些碳納米管承載著層間的電流。 該研究小組認(rèn)為,這樣的體系結(jié)構(gòu)可以將能耗降低到小于標(biāo)準(zhǔn)芯片的千分之一。
此外,另一種提高計算性能的方法是使用像“量子計算”這樣的技術(shù),該技術(shù)有望加速某些特定問題的計算速度,還有一種“神經(jīng)計算”技術(shù)旨在是模擬大腦的神經(jīng)元處理單元。 但是,這些替代性的技術(shù)可能需要很久才能走出實驗室。 而許多研究者認(rèn)為,量子計算機將為小眾應(yīng)用提供優(yōu)勢,而不是用來取代處理日常任務(wù)的數(shù)字計算。去年底,谷歌量子人工智能實驗室已證明:他們的D-Wave量子計算機處理某些特定問題,比普通計算機快一億倍。
通過新材料、不同的量子效應(yīng),甚至超導(dǎo)等不可思議的新技術(shù),半導(dǎo)體行業(yè)或許能繼續(xù)像以往一樣提高芯片集成度。如果集成度能獲得明顯提升,那么市場對速度更快的處理器的需求可能將再次爆發(fā)。
但目前看來,摩爾定律被打破將成為一種新常態(tài)。摩爾定律對半導(dǎo)體行業(yè)的指導(dǎo)意義正逐漸消失。