精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當前位置:芯片市場動態 → 正文

摩爾定律已死 半導體行業發展會停滯嗎?

責任編輯:editor004 作者:維金 邊策 |來源:企業網D1Net  2016-02-16 11:28:18 本文摘自:新浪科技

在“患病多年”后,摩爾定律于51歲“壽終正寢”。

1965年,英特爾聯合創始人戈登-摩爾(Gordon Moore)觀察到,集成電路中的元件集成度每12個月就能翻番。此外,確保每晶體管價格最低的單位芯片晶體管數量每12個月增長一倍。1965年,單位芯片50個晶體管可以帶來最低的每晶體管成本。摩爾預計,到1970年,單位芯片可集成1000個元件,而每晶體管成本則將下降90%。

在對數據進行提煉和簡化之后,這一現象就被稱作“摩爾定律”:單位芯片晶體管數量每12個月增長一倍。

摩爾的觀察并非基于任何科學或工程原理。這僅僅反映了行業發展趨勢。然而,在隨后的發展中,半導體行業并沒有將摩爾定律當作描述性、預測性的觀察,而是視為規定性、確定性的守則。整個行業必須實現摩爾定律預測的目標。

然而,實現這一目標無法依靠僥幸。芯片開發是一個復雜過程,需要用到來自多家公司的機械、軟件和原材料。為了確保所有廠商根據摩爾定律制定同樣的時間表,整個行業遵循了共同的技術發展路線圖。由英特爾、AMD、臺積電、GlobalFoundries和IBM等廠商組成的行業組織半導體協會從1992年開始發布這樣的路線圖。1998年,半導體行業協會與全球其他地區的類似組織合作,成立了“國際半導體技術路線圖”組織。最近的一份路線圖于2013年發布。

摩爾定律提出的預測早在很久之前就已出現過問題。1975年,摩爾本人更新了摩爾定律,將半導體行業的發展周期從12個月增加至24個月。在隨后30年中,通過縮小芯片上元件的尺寸,芯片發展一直遵循著摩爾定律。

50年來芯片晶體管和工作頻率的指數式增長(注:縱坐標為對數坐標)

  50年來芯片晶體管和工作頻率的指數式增長(注:縱坐標為對數坐標)

摩爾定律的終結

然而到00年代,很明顯單純依靠縮小尺寸的做法正走到尾聲。不過,通過其他一些技術,芯片的發展仍然符合摩爾定律的預測。在90納米時代,應變硅技術問世。在45納米時代,一種能提高晶體管電容的新材料推出。在22納米時代,三柵極晶體管使芯片性能變得更強大。

不過,這些新技術也已走到末路。用于芯片制造的光刻技術正面臨壓力。目前,14納米芯片在制造時使用的是193納米波長光。光的波長較長導致制造工藝更復雜,成本更高。波長13.5納米的遠紫外光被認為是未來的希望,但適用于芯片制造的遠紫外光技術目前仍需要攻克工程難題。

即使遠紫外光技術得到應用,目前也不清楚,芯片集成度能有多大的提高。如果縮小至2納米,那么單個晶體管將只有10個原子大小,而如此小的晶體管可靠性很可能存在問題。即使這些問題得到解決,功耗也將繼續造成困擾。隨著晶體管的連接越來越緊密,芯片功耗將越來越大。

應變硅和三柵極晶體管等新技術歷經了10多年的研究才得到商用。遠紫外光技術被探討的時間更長。而成本因素也需要考慮。相應于摩爾定律,我們還有一個洛克定律。根據后一定律,芯片制造工廠的成本每4年就會翻番。新技術的發展可能將帶來更高的芯片集成度,但制造這種芯片的工廠將有著高昂的造價。

近期,我們已經看到這些因素給芯片公司造成了現實問題。英特爾原計劃于2016年在Cannonlake處理器中改用10納米工藝,這小于當前Skylake芯片采用的14納米工藝。去年7月,英特爾調整了計劃。根據新計劃,英特爾將推出另一代處理器Kaby Lake,并沿用此前的14納米工藝。Cannonlake和10納米工藝仍在計劃之中,但被推遲至2017年下半年發布。

與此同時,新增的晶體管變得越來越難用。80至90年代,新增晶體管帶來的價值顯而易見。奔騰處理器的速度遠高于486處理器,而奔騰2代又遠好于奔騰1代。只要處理器升級,計算機性能就會有明顯的提升。然而在進入00年代之后,這樣的性能提升逐漸變得困難。受發熱因素影響,時鐘頻率無法繼續提高,而單個處理器核心的性能只能實現增量式增長。因此,我們看到處理器正集成更多核心。從理論上來說,這提升了處理器的整體性能,但這種性能提升很難被軟件所利用。

半導體行業的新路線圖

這一系列困難表明,由摩爾定律驅動的半導體行業發展路線圖即將終結。但摩爾定律日薄西山并不意味著半導體行業進步的終結。

愛荷華州大學的計算機科學家丹尼爾-里德(Daniel Reed)打了個比方:“想一想飛機行業發生了什么,一架波音787并不比上世紀50年代的707快多少,但是它們仍然是非常不同的兩種飛機。”比如全電子控制和碳纖維機身。“創新絕對會繼續下去,但會更細致和復雜。”

2014年,國際半導體技術路線圖組織決定,下一份路線圖將不再依照摩爾定律。《自然》雜志刊文稱,將于下月發布的下一份路線圖將采用完全不同的方法。

新的路線圖不再專注于芯片內部技術,而新方法被稱作“比摩爾更多”。例如,智能手機和物聯網的發展意味著,多樣化的傳感器和低功耗處理器的重要性將大幅提升。用于這些設備的高集成度芯片不僅需要邏輯處理和緩存模塊,還需要內存和電源管理模塊,用于GPS、移動網絡和WiFi網絡的模擬器件,甚至陀螺儀和加速計等MEMS器件。

計算設備體積隨著半導體工業發展呈指數式縮小

  計算設備體積隨著半導體工業發展呈指數式縮小

以往,這些不同類型的器件需要用到不同的制造工藝,以滿足不同需求。而新路線圖將提出,如何將這些器件集成在一起。整合不同制造工藝、處理不同原材料需要新的處理和支持技術。如果芯片廠商希望為這些新市場開發芯片,那么解決這些問題比提高芯片集成度更重要。

此外,新的路線圖還將關注新技術,而不僅是當前的硅CMOS工藝。英特爾已宣布,在達到7納米工藝之后,將不再使用硅材料。銻化銦和銦鎵砷化合物都有著不錯的前景。與硅相比,這些材料能帶來更快的開關速度,而功耗也較低。碳材料,無論是碳納米管還是石墨烯,也在繼續被業內研究。

在許多備選材料中,二維材料“石墨烯”被看好。這種自旋電子材料通過翻轉電子自旋來計算,而不是通過移動電子。這種“毫伏特”量級(操作電壓比“伏特”量級的晶體管要低得多)的電子開關比硅材料開關的速度更快,而且發熱量更小。不幸的是這種電子材料還未走出實驗室。

石墨烯的掃描探針顯微鏡圖像

  石墨烯的掃描探針顯微鏡圖像

盡管優先級下降,但縮小尺寸提高集成度的做法并未被徹底拋棄。在三柵極晶體管的基礎上,到2020年左右,“柵極全包圍”晶體管和納米線將成為現實。而到20年代中期,我們可能將看到一體化3D芯片的出現,即在一整塊硅片上制作多層器件。

斯坦福大學的電氣工程師Subhasish Mitra和他的同事已經開發出用碳納米管將3D存儲單元層連接起來的辦法,這些碳納米管承載著層間的電流。 該研究小組認為,這樣的體系結構可以將能耗降低到小于標準芯片的千分之一。

IBM的3D存儲芯片微觀結構

  IBM的3D存儲芯片微觀結構

此外,另一種提高計算性能的方法是使用像“量子計算”這樣的技術,該技術有望加速某些特定問題的計算速度,還有一種“神經計算”技術旨在是模擬大腦的神經元處理單元。 但是,這些替代性的技術可能需要很久才能走出實驗室。 而許多研究者認為,量子計算機將為小眾應用提供優勢,而不是用來取代處理日常任務的數字計算。去年底,谷歌量子人工智能實驗室已證明:他們的D-Wave量子計算機處理某些特定問題,比普通計算機快一億倍。

D-Wave量子計算機

  D-Wave量子計算機

通過新材料、不同的量子效應,甚至超導等不可思議的新技術,半導體行業或許能繼續像以往一樣提高芯片集成度。如果集成度能獲得明顯提升,那么市場對速度更快的處理器的需求可能將再次爆發。

但目前看來,摩爾定律被打破將成為一種新常態。摩爾定律對半導體行業的指導意義正逐漸消失。

關鍵字:摩爾定律半導體行業

本文摘自:新浪科技

x 摩爾定律已死 半導體行業發展會停滯嗎? 掃一掃
分享本文到朋友圈
當前位置:芯片市場動態 → 正文

摩爾定律已死 半導體行業發展會停滯嗎?

責任編輯:editor004 作者:維金 邊策 |來源:企業網D1Net  2016-02-16 11:28:18 本文摘自:新浪科技

在“患病多年”后,摩爾定律于51歲“壽終正寢”。

1965年,英特爾聯合創始人戈登-摩爾(Gordon Moore)觀察到,集成電路中的元件集成度每12個月就能翻番。此外,確保每晶體管價格最低的單位芯片晶體管數量每12個月增長一倍。1965年,單位芯片50個晶體管可以帶來最低的每晶體管成本。摩爾預計,到1970年,單位芯片可集成1000個元件,而每晶體管成本則將下降90%。

在對數據進行提煉和簡化之后,這一現象就被稱作“摩爾定律”:單位芯片晶體管數量每12個月增長一倍。

摩爾的觀察并非基于任何科學或工程原理。這僅僅反映了行業發展趨勢。然而,在隨后的發展中,半導體行業并沒有將摩爾定律當作描述性、預測性的觀察,而是視為規定性、確定性的守則。整個行業必須實現摩爾定律預測的目標。

然而,實現這一目標無法依靠僥幸。芯片開發是一個復雜過程,需要用到來自多家公司的機械、軟件和原材料。為了確保所有廠商根據摩爾定律制定同樣的時間表,整個行業遵循了共同的技術發展路線圖。由英特爾、AMD、臺積電、GlobalFoundries和IBM等廠商組成的行業組織半導體協會從1992年開始發布這樣的路線圖。1998年,半導體行業協會與全球其他地區的類似組織合作,成立了“國際半導體技術路線圖”組織。最近的一份路線圖于2013年發布。

摩爾定律提出的預測早在很久之前就已出現過問題。1975年,摩爾本人更新了摩爾定律,將半導體行業的發展周期從12個月增加至24個月。在隨后30年中,通過縮小芯片上元件的尺寸,芯片發展一直遵循著摩爾定律。

50年來芯片晶體管和工作頻率的指數式增長(注:縱坐標為對數坐標)

  50年來芯片晶體管和工作頻率的指數式增長(注:縱坐標為對數坐標)

摩爾定律的終結

然而到00年代,很明顯單純依靠縮小尺寸的做法正走到尾聲。不過,通過其他一些技術,芯片的發展仍然符合摩爾定律的預測。在90納米時代,應變硅技術問世。在45納米時代,一種能提高晶體管電容的新材料推出。在22納米時代,三柵極晶體管使芯片性能變得更強大。

不過,這些新技術也已走到末路。用于芯片制造的光刻技術正面臨壓力。目前,14納米芯片在制造時使用的是193納米波長光。光的波長較長導致制造工藝更復雜,成本更高。波長13.5納米的遠紫外光被認為是未來的希望,但適用于芯片制造的遠紫外光技術目前仍需要攻克工程難題。

即使遠紫外光技術得到應用,目前也不清楚,芯片集成度能有多大的提高。如果縮小至2納米,那么單個晶體管將只有10個原子大小,而如此小的晶體管可靠性很可能存在問題。即使這些問題得到解決,功耗也將繼續造成困擾。隨著晶體管的連接越來越緊密,芯片功耗將越來越大。

應變硅和三柵極晶體管等新技術歷經了10多年的研究才得到商用。遠紫外光技術被探討的時間更長。而成本因素也需要考慮。相應于摩爾定律,我們還有一個洛克定律。根據后一定律,芯片制造工廠的成本每4年就會翻番。新技術的發展可能將帶來更高的芯片集成度,但制造這種芯片的工廠將有著高昂的造價。

近期,我們已經看到這些因素給芯片公司造成了現實問題。英特爾原計劃于2016年在Cannonlake處理器中改用10納米工藝,這小于當前Skylake芯片采用的14納米工藝。去年7月,英特爾調整了計劃。根據新計劃,英特爾將推出另一代處理器Kaby Lake,并沿用此前的14納米工藝。Cannonlake和10納米工藝仍在計劃之中,但被推遲至2017年下半年發布。

與此同時,新增的晶體管變得越來越難用。80至90年代,新增晶體管帶來的價值顯而易見。奔騰處理器的速度遠高于486處理器,而奔騰2代又遠好于奔騰1代。只要處理器升級,計算機性能就會有明顯的提升。然而在進入00年代之后,這樣的性能提升逐漸變得困難。受發熱因素影響,時鐘頻率無法繼續提高,而單個處理器核心的性能只能實現增量式增長。因此,我們看到處理器正集成更多核心。從理論上來說,這提升了處理器的整體性能,但這種性能提升很難被軟件所利用。

半導體行業的新路線圖

這一系列困難表明,由摩爾定律驅動的半導體行業發展路線圖即將終結。但摩爾定律日薄西山并不意味著半導體行業進步的終結。

愛荷華州大學的計算機科學家丹尼爾-里德(Daniel Reed)打了個比方:“想一想飛機行業發生了什么,一架波音787并不比上世紀50年代的707快多少,但是它們仍然是非常不同的兩種飛機。”比如全電子控制和碳纖維機身。“創新絕對會繼續下去,但會更細致和復雜。”

2014年,國際半導體技術路線圖組織決定,下一份路線圖將不再依照摩爾定律。《自然》雜志刊文稱,將于下月發布的下一份路線圖將采用完全不同的方法。

新的路線圖不再專注于芯片內部技術,而新方法被稱作“比摩爾更多”。例如,智能手機和物聯網的發展意味著,多樣化的傳感器和低功耗處理器的重要性將大幅提升。用于這些設備的高集成度芯片不僅需要邏輯處理和緩存模塊,還需要內存和電源管理模塊,用于GPS、移動網絡和WiFi網絡的模擬器件,甚至陀螺儀和加速計等MEMS器件。

計算設備體積隨著半導體工業發展呈指數式縮小

  計算設備體積隨著半導體工業發展呈指數式縮小

以往,這些不同類型的器件需要用到不同的制造工藝,以滿足不同需求。而新路線圖將提出,如何將這些器件集成在一起。整合不同制造工藝、處理不同原材料需要新的處理和支持技術。如果芯片廠商希望為這些新市場開發芯片,那么解決這些問題比提高芯片集成度更重要。

此外,新的路線圖還將關注新技術,而不僅是當前的硅CMOS工藝。英特爾已宣布,在達到7納米工藝之后,將不再使用硅材料。銻化銦和銦鎵砷化合物都有著不錯的前景。與硅相比,這些材料能帶來更快的開關速度,而功耗也較低。碳材料,無論是碳納米管還是石墨烯,也在繼續被業內研究。

在許多備選材料中,二維材料“石墨烯”被看好。這種自旋電子材料通過翻轉電子自旋來計算,而不是通過移動電子。這種“毫伏特”量級(操作電壓比“伏特”量級的晶體管要低得多)的電子開關比硅材料開關的速度更快,而且發熱量更小。不幸的是這種電子材料還未走出實驗室。

石墨烯的掃描探針顯微鏡圖像

  石墨烯的掃描探針顯微鏡圖像

盡管優先級下降,但縮小尺寸提高集成度的做法并未被徹底拋棄。在三柵極晶體管的基礎上,到2020年左右,“柵極全包圍”晶體管和納米線將成為現實。而到20年代中期,我們可能將看到一體化3D芯片的出現,即在一整塊硅片上制作多層器件。

斯坦福大學的電氣工程師Subhasish Mitra和他的同事已經開發出用碳納米管將3D存儲單元層連接起來的辦法,這些碳納米管承載著層間的電流。 該研究小組認為,這樣的體系結構可以將能耗降低到小于標準芯片的千分之一。

IBM的3D存儲芯片微觀結構

  IBM的3D存儲芯片微觀結構

此外,另一種提高計算性能的方法是使用像“量子計算”這樣的技術,該技術有望加速某些特定問題的計算速度,還有一種“神經計算”技術旨在是模擬大腦的神經元處理單元。 但是,這些替代性的技術可能需要很久才能走出實驗室。 而許多研究者認為,量子計算機將為小眾應用提供優勢,而不是用來取代處理日常任務的數字計算。去年底,谷歌量子人工智能實驗室已證明:他們的D-Wave量子計算機處理某些特定問題,比普通計算機快一億倍。

D-Wave量子計算機

  D-Wave量子計算機

通過新材料、不同的量子效應,甚至超導等不可思議的新技術,半導體行業或許能繼續像以往一樣提高芯片集成度。如果集成度能獲得明顯提升,那么市場對速度更快的處理器的需求可能將再次爆發。

但目前看來,摩爾定律被打破將成為一種新常態。摩爾定律對半導體行業的指導意義正逐漸消失。

關鍵字:摩爾定律半導體行業

本文摘自:新浪科技

電子周刊
回到頂部

關于我們聯系我們版權聲明隱私條款廣告服務友情鏈接投稿中心招賢納士

企業網版權所有 ©2010-2024 京ICP備09108050號-6 京公網安備 11010502049343號

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 浦江县| 灵台县| 延吉市| 乌海市| 万全县| 虞城县| 琼海市| 山阳县| 石林| 东乌| 富源县| 偃师市| 高碑店市| 武功县| 威海市| 宁强县| 济南市| 巍山| 喀喇沁旗| 涪陵区| 临潭县| 横峰县| 巩义市| 大埔县| 海南省| 洛南县| 三穗县| 贡嘎县| 天等县| 新乡县| 白朗县| 凤凰县| 中方县| 蚌埠市| 营口市| 邓州市| 荣昌县| 大新县| 宾阳县| 八宿县| 镇远县|