精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

2019年機器學習:追蹤人工智能發展之路

責任編輯:zsheng

2018-10-15 21:56:32

摘自:億歐網

IDC報告顯示,預計機器學習工具和解決方案的企業級采用率將在本十年結束前達到65% - 并且支出將達到460億美元。平均而言,55%的企業CIO已將機器學習視為業務加速的核心優先事項之一。本文重點介紹了2019年機器學習將如何繼續發展。

IDC報告顯示,預計機器學習工具和解決方案的企業級采用率將在本十年結束前達到65% - 并且支出將達到460億美元。平均而言,55%的企業CIO已將機器學習視為業務加速的核心優先事項之一。本文重點介紹了2019年機器學習將如何繼續發展。

以下是億歐智庫為您帶來的精選分享:

機器學習的新用例即將出現

今年早些時候,美國陸軍宣布將使用定制的機器學習軟件工具用于戰斗車輛的預測性維護。換句話說,機器學習將能夠預測車輛可能需要何時以及何種類型的維修服務。另一個有趣的機器學習用例是根據之前股票收益的記錄預測股市波動。最近的一項研究表明,用機器學習預測股票市場具有60%以上的準確度。在醫療健康領域,機器學習模型被用于估計一個人的死亡概率(在這種情況下的準確率遠遠超過90%)。零售,營銷和銷售以及工業/制造業場景也常有機器學習的用例出現。

“閱讀”和“解釋”過去的數據并預測未來——這是機器學習的本質而技術肯定會越來越精致。人工智能應用程序和機器學習工具的概念不再局限于機器人。相反,它們已成為業務工作流程和日常應用程序的自然擴展。

采用“針對機器學習優化的硬件”將會出現

2019年很可能是特別準備的硅芯片——具有定制人工智能和機器學習功能——成為主流,至少對于企業而言。在可預見的未來,人工智能優化硬件市場將繼續快速增長。一系列新的,功能強大的處理設備將會出現——我們還可以看到高端CPU和GPU。總而言之,這些工具和平臺將大大增強機器學習硬件的可用性。

云計算與機器學習結合

到2020年,全球云計算市場的年增長率約為25%。企業中機器學習的日益普及是推動這一激增的關鍵因素。為了成功實施“機器學習文化”,企業必須比以往更加關注創新——特別強調改進的云托管和基礎設施參數。隨著時間的推移,越來越多的“人工智能專用工具和系統”必須存儲在云上——后者需要具有足夠的安全性和可用性標準。強大、可擴展的云支持將幫助企業從機器學習無縫轉移到深度學習,為最終用戶提供更大價值,并提高他們的ROI數據。

從2019年開始,一般用戶將開始更清楚地了解人工智能和機器學習流程的工作原理 。鑒于人工智能正在其存在的領域(例如:醫學科學)的關鍵性質,人們想要知道技術如何得出其結論/預測是很自然的。

繼續推進膠囊網絡

神經網絡的優點是,它們通常不考慮選擇對象的相對方向或位置。因此,可能會出現“信息差距”。而膠囊網絡就是為了而生的。它們很可能在2019年及以后取代許多傳統的神經網絡。在性能方面,這些膠囊網絡比傳統的神經網絡系統更具優勢 - 具有更準確的模式檢測功能,而且在少量數據時,錯誤概率也大大降低。更重要的是 - 膠囊網絡也不需要重復訓練迭代,以“理解”變化。

基于機器學習算法的高級醫療保健模塊,用于比較患者的醫學圖像和其他醫療圖像,已經在使用。生物制藥公司阿斯利康(AstraZeneca)計劃廣泛使用機器人和機器學習 - 用于在中國開發智能診斷系統。

人工智能助手的興起和崛起

Siri和Google智能助理以及Alexa已經成為我們日常生活的一部分,而更重要的是,每個頂級“智能助手”都在逐年變得更加聰明。

基于5000個一般性問題,Siri設法回答了大約31%,其中近80%是正確答案;在同一項調查中,Google智能助理回答了超過67%的問題,準確度低于88%。

隨著機器學習范圍的擴大,人工智能助手已準備好超越智能家居。從明年開始,現代和起亞將開始在其新車型中提供內置的人工智能虛擬助手系統。這些助手將能夠執行無數的任務——從遠程家庭和汽車控制功能(通過語音)到目的地建議(基于先前的偏好)和導航指南。在所有生活范圍內,具有機器學習功能的“智能助手”將使生活變得前所未有的簡單。

智能聊天機器人(具有人工智能)也正在迅速崛起。但是,有必要保持警惕——因為訓練數據集中的偏差會對用戶體驗造成嚴重損害。微軟的'Tay'聊天機器人就是這種失敗的典型例子。

開發人員將專注于使用機器學習解決更多“真正的問題”

當涉及到諸如人工智能(多用途無人機和自動監控攝像頭以及自動駕駛汽車等)等技術時,它很容易過火。然而,重要的是要意識到 - 雖然所有這些事情都可以成為現實——但是,成熟的數據驅動型生態系統的步驟必須是漸進和系統化的。在2019年,應用程序開發人員和人工智能專家將關注使用機器學習來成功解決真正的重要需求(個人和業務)——而不是簡單地制作新的深度學習工具原型。

換句話說,開發人員必須明白人工智能和機器學習不僅僅是幾個技術流行語——如果實施得當,他們的潛力可能是無窮無盡的。目前還有許多其他技術正在爭奪注意力(如4d打印),除非人工智能的發展解決了實際問題,否則投資者可能會開始尋找其他地方。將“人工智能 overhype”與“人工智能事實”分開是至關重要的,并根據后者采取行動。

在最近的一項研究中,發現89%的CIO計劃在其業務中實施機器學習工具和應用程序。

機器人的世界?

智能機器人在工作場所的作用正逐漸增加——而機器學習的改進是其主要原因。在日本,到2025年,人工智能機器人將提供四分之三的老年人護理服務——取代人類照顧者。天元服裝——一家中國的T恤公司——計劃在其阿肯色州工廠使用“縫紉機器人”。一般而言,許多勞動密集型任務(特別是不需要太多專業技能的重復性活動)將在不久的將來由“智能機器人”執行。除了使工作流程更智能,提高可用性和可靠性以及縮短產品上市時間外,機器學習驅動的機器人還可以顯著降低運營成本(以及外包成本,如果有的話)。提高生產率應該是工作場所全面采用人工智能的直接結果。

機器學習也可以在精準農業中發揮重要作用。用于農業的智能電桿,具有深根傳感器和專用機器學習模塊,可以幫助農民做出更明智的決策。

語音技術脫穎而出

ComScore是否預測到2020年將有50%的搜索活動由語音提供支持,這一點還有待觀察——但是,語音識別(以及基于此的交互)已經成為一個重要的事實是無法擺脫的機器學習的要素。與早期的語音技術不同,現今的語音識別誤碼率低于5%——這比可用的更多。

交互式語音應答(IVR)系統變得比以往任何時候都更加智能——由于迭代學習,基于語音的機器學習系統能夠轉錄各種語言/口音。開發人員推出支持語音技術的移動應用程序的趨勢預計也將在2019年獲得進一步的發展勢頭。亞馬遜Alexa和Google Home等助手已經理解了我們的語音命令——他們正在為更多此類平臺鋪平道路。進入市場。

傳統的,適合的客戶服務主管也逐漸被虛擬角色所取代。后者提供更快速的響應 - 并且由于對話是智能的(虛擬代理從之前的對話中學習),因此個人觸摸不會丟失。

美國和中國的人工智能市場

就人工智能研究和收養而言,北美傳統上一直是領跑者。然而,這種束縛正在變得越來越弱——中國市場正在成為一股強有力的力量。 2017年,人工智能創業公司在中國的股權融資份額高于美國同行(48%對38%)。中國的人工智能啟動場景是整體的(不像北美市場的輕微碎片)——重點是物流,智慧城市項目,零售,醫療保健,智能農業和其他領域。

在深度學習方面,中國顯然正在削弱它 - 發布的患者數量比美國多6倍。根據報告,中國希望到2020年與美國人工智能相媲美,并在十年內成為無可爭議的機器學習技術領導者。看看美國與中國在未來幾年內爭奪全球人工智能 / 機器學習霸權的競爭將會非常有趣。

更多的機器學習平臺

像TensorFlow,H2O,人工智能-one和Torch這樣的平臺已經在如何在不同場景中部署機器學習功能方面發揮重要作用。在即將到來的這一年中,我們可以期待更強大的機器學習平臺——具有頂尖的分析,分類和預測功能。這些平臺的容量與其他API一起使用,大數據也將繼續改進。機器學習的不斷發展為計算機和移動設備提供了更快“學習”和更好地“解釋/分析”數據的機會。

徹底改變人類與技術互動的方式

他們目前可能只出現在少數幾個地方——但'無收銀員亞馬遜Go'商店正在徹底改變購物的概念。事實上,到2021年,僅在美國就有2000多家“亞馬遜Go”商店。我們與智能事物(特別是)和技術打交道,互動,生活的方式(總的來說)正在被人工智能&機器學習革命所塑造。

無論是企業還是社會或智能家居——深度學習都將擾亂我們的生活,確保全面提升效率。通過人工智能,科幻電影和我們的想象力似乎已經成為可能。這里的關鍵是該技術對不同類型用例的適應性。機器學習正在解決問題并提供價值——而這正是它越來越受歡迎的原因。

NLP變得更加微妙

作為人工智能的子領域,自然語言處理(NLP)的重要性在過去幾年中顯著增加。自然語言生成主要用于將數據轉換為文本,是許多深度學習系統的關鍵特征——并且用于編寫詳細的市場摘要或報告——NLP非常方便。自然語言處理的準確度也不斷提高,并且自動化系統能夠以無縫方式傳達思想。 Cambridge Semantics和Attivio是一些著名的提供NLP服務的公司。

NLP模塊通常需要分析三個方面:語法,語義和上下文。隨著機器學習領域的更多進展和新的應用領域被挖掘出來,人工智能專家(而不是技術通才)的需求將繼續增長。有一些灰色地帶——比如大規模失業的前景和可能會進行侵入性監視——但可以肯定地說,2019年將成為機器學習的重要一年。 AI-as-a-Service的時代已經到了!

鏈接已復制,快去分享吧

企業網版權所有?2010-2024 京ICP備09108050號-6京公網安備 11010502049343號

  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 泽普县| 乳山市| 庆元县| 中江县| 福建省| 武宣县| 汉源县| 句容市| 原平市| 丹巴县| 仙游县| 荥经县| 房山区| 绥宁县| 彩票| 建宁县| 宣威市| 黄大仙区| 集安市| 深圳市| 万载县| 临清市| 五家渠市| 新乐市| 南溪县| 青州市| 尚志市| 屏东市| 北流市| 鄂托克前旗| 江安县| 黎城县| 雷波县| 克东县| 长顺县| 彰化市| 平谷区| 满城县| 清徐县| 恭城| 瓮安县|