趨勢一:AI于各行業垂直領域應用具有巨大的潛力
人工智能市場在零售、交通運輸和自動化、制造業及農業等各行業垂直領域具有巨大的潛力。而驅動市場的主要因素,是人工智能技術在各種終端用戶垂直領域的應用數量不斷增加,尤其是改善對終端消費者服務。
當然人工智能市場要起來也受到IT基礎設施完善、智能手機及智能穿戴式設備的普及。其中,以自然語言處理(NLP)應用市場占AI市場很大部分。隨著自然語言處理的技術不斷精進而驅動消費者服務的成長,還有:汽車信息通訊娛樂系統、AI機器人及支持AI的智能手機等領域。
趨勢二:AI導入醫療保健行業維持高速成長
由于醫療保健行業大量使用大數據及人工智能,進而精準改善疾病診斷、醫療人員與患者之間人力的不平衡、降低醫療成本、促進跨行業合作關系。
此外AI還廣泛應用于臨床試驗、大型醫療計劃、醫療咨詢與宣傳推廣和銷售開發。人工智能導入醫療保健行業從2016年到2022年維持很高成長,預計從2016年的6.671億美元達到2022年的79.888億美元年均復合增長率為52.68%。
趨勢三:AI取代屏幕成為新UI/UX接口
過去從PC到手機時代以來,用戶接口都是透過屏幕或鍵盤來互動。隨著智能喇叭(SmartSpeaker)、虛擬/增強現實(VR/AR)與自動駕駛車系統陸續進入人類生活環境,加速在不需要屏幕的情況下,人們也能夠很輕松自在與運算系統溝通。
這表示著人工智能透過自然語言處理與機器學習讓技術變得更為直觀,也變得較易操控,未來將可以取代屏幕在用戶接口與用戶體驗的地位。
人工智能除了在企業后端扮演重要角色外,在技術接口也可承擔更復雜角色。例如:使用視覺圖形的自動駕駛車,透過人工神經網絡以實現實時翻譯,也就是說,人工智能讓接口變得更為簡單且更有智能,也因此設定了未來互動的高標準模式。
趨勢四:未來手機芯片一定內建AI運算核心
現階段主流的ARM架構處理器速度不夠快,若要進行大量的圖像運算仍嫌不足,所以未來的手機芯片一定會內建AI運算核心。正如,蘋果將3D感測技術帶入iPhone之后,Android陣營智能手機將在明年跟進導入3D感測相關應用。
趨勢五:AI芯片關鍵在于成功整合軟硬件
AI芯片的核心是半導體及算法。AI硬件主要是要求更快指令周期與低功耗,包括GPU、DSP、ASIC、FPGA和神經元芯片,且須與深度學習算法相結合,而成功相結合的關鍵在于先進的封裝技術。
總體來說GPU比FPGA快,而在功率效能方面FPGA比GPU好,所以AI硬件選擇就看產品供貨商的需求考慮而定。
例如,蘋果的FaceID臉部辨識就是3D深度感測芯片加上神經引擎運算功能,整合高達8個組件進行分析,分別是紅外線鏡頭、泛光感應組件、距離傳感器、環境光傳感器、前端相機、點陣投影器、喇叭與麥克風。蘋果強調用戶的生物識別數據,包含:指紋或臉部辨識都以加密形式儲存在iPhone內部,所以不易被竊取。
趨勢六:AI自主學習是終極目標
AI“大腦”變聰明是分階段進行,從機器學習進化到深度學習,再進化至自主學習。目前,仍處于機器學習及深度學習的階段,若要達到自主學習需要解決四大關鍵問題。
首先,是為自主機器打造一個AI平臺;還要提供一個能夠讓自主機器進行自主學習的虛擬環境,必須符合物理法則,碰撞,壓力,效果都要與現實世界一樣;然后再將AI的“大腦”放到自主機器的框架中;最后建立虛擬世界入口(VR)。
目前,NVIDIA推出自主機器處理器Xavier,就在為自主機器的商用和普及做準備工作。
趨勢七:最完美的架構是把CPU和GPU(或其他處理器)結合起來
未來,還會推出許多專門的領域所需的超強性能的處理器,但是CPU是通用于各種設備,什么場景都可以適用。所以,最完美的架構是把CPU和GPU(或其他處理器)結合起來。例如,NVIDIA推出CUDA計算架構,將專用功能ASIC與通用編程模型相結合,使開發人員實現多種算法。
趨勢八:AR成為AI的眼睛,兩者是互補、不可或缺
未來的AI需要AR,未來的AR也需要AI,可以將AR比喻成AI的眼睛。為了機器人學習而創造的在虛擬世界,本身就是虛擬現實。還有,如果要讓人進入到虛擬環境去對機器人進行訓練,還需要更多其它的技術。
展望未來,隨著AI、物聯網、VR/AR、5G等技術成熟,將帶動新一波半導體產業的30年榮景,包括:內存、中央處理器、通訊與傳感器四大芯片,各種新產品應用芯片需求不斷增加,以中國在半導體的龐大市場優勢絕對在全球可扮演關鍵的角色。