精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當前位置:物聯網市場動態 → 正文

4G和5G不配物聯網 不過死撐

責任編輯:editor004 |來源:企業網D1Net  2016-08-16 14:26:44 本文摘自:51CTO

物聯網是決定未來經濟的關鍵技術。無所不在的萬物互聯終將成為現實。

然而,無所不在的物聯網覆蓋,沒那么容易。

ZigBee/6LoWPAN或IEEE 802.11ah等物聯網技術,僅適于短距離物聯網覆蓋,且無法保證可靠的網絡協調控制。衛星通信的成本讓人望而卻步,能耗高,且無法抵達室內。

時代在召喚,蜂窩網絡瀟灑走過來。

物聯網嬌軀一震,勾搭上了已覆蓋全球的2/3/4G網絡,跟他在一起可以至少少奮斗十年。

2/3/4G網絡就像富一代,成熟穩重,溫柔多金,還特有安全感。它網絡覆蓋廣,分布密集,有可靠的網絡協調控制,不僅能保證物聯網的安全性和有效性,且易于規劃、管理和監控。物聯網可直接接入現成的基站里,拎包入住,圓你一個別墅夢。

為了配合物聯網之嬌軀亂顛,2/3/4G網絡開始內外兼修,重振雄風。它增強覆蓋,降低功耗,減少設備復雜性,降低時延,最小化每Bit成本。

畢竟隔了幾代,力不從心的時候也是有的。

GSM容量有限,無法滿足大量設備同時接入。富一代很拼,它減小信令開銷,控制過載,收緊資源粒度,擴大覆蓋范圍,但是,這終究只是權宜之計,如補充雄性荷爾蒙,不是面向未來的根本之路,日子還長呢。GSM的功耗和接入時延讓物聯網領悟到了初夜的遺憾。

至于3G(UMTS),工作頻段更高,覆蓋范圍小,室內覆蓋差,同時,UMTS模塊比GSM模塊貴的多。Pass!

希望在LTE上?

夢寐易忘,初心難改。

LTE是為數據洪流而設計,一開始并沒有考慮物聯網需求。

講真,每次聽說LTE要熊抱物聯網,我就覺得它在死撐。

LTE網絡的特點是:設備少、流量大。少量的設備較之于海量的數據流量,信令流量幾乎可以忽略不計。

物聯網的特點是:設備多、流量小。海量的設備較之于零星的數據包,信令流量大爆發,引起網絡癱瘓也不是不可能的。

與物聯網在一起的LTE面對許多現實的挑戰,包括控制開銷、能效、覆蓋增強、魯棒性、安全和可擴展性等。

最擔心的是,物聯網業務和傳統語音、數據業務共存,當大規模物聯網設備接入時,如何避免對傳統業務的影響?

LTE的隨機接入過程(RACH)首先被擺上臺面。

當UE(手機)要和基站(eNodeB)建立數據連接時,為了和網絡建立同步,由UE觸發隨機接入過程。RACH由一系列時-頻資源組成,稱為RA時隙。UE在RA時隙里使用前導序列向eNodeB發送接入請求。

LTE隨機接入過程有兩種類型:非競爭的隨機接入和競爭的隨機接入。每個LTE小區有64個前導序列,分別用于非競爭和競爭的隨機接入。

非競爭的隨機接入由網絡控制,能避免沖突,減小接入時延,保障接入成功率,比如在切換場景中。這不影響物聯網業務。

影響物聯網業務的是基于競爭的隨機接入過程。

  (1) 前導序列傳輸(Message1)

(2) 隨機接入響應(Message2)

(3) Message3發送 (RRC Connection Request)

(4) 沖突解決消息(Message4)

在基于競爭的隨機接入過程中,會發生兩次沖突。

第一次沖突:

Message 1:UE隨機發送前導序列,請求接入。由于前導序列正交,同一RA時隙允許多個UE使用不同的前導序列。在這種情況下, eNodeB可解碼請求。

如果兩個或兩個以上的UE使用相同的前導序列,沖突就會發生,導致eNodeB無法檢測到請求。

當然,即使是多臺UE使用相同的前導序列,因為接收信號強度不同,eNodeB也可能能檢測到請求。但是,這會導致eNodeB向多個UE發送相同的Message2(隨機接入響應),從而將在Message 3處引發第二次沖突。

第二次沖突:

如果不同的UE收到相同的Message2,那么它們會獲得相同的上行資源,同時發送Message3,此時,第二次沖突發生。

隨機接入過程成為LTE熊抱物聯網的第一道挑戰,因為當大量物聯網設備同時嘗試接入基站時(比如發生地震時,某地區的所有地震監測器同時發出告警),會出現信令尖峰,從而引起PRACH過載,接入競爭可能性增加,接入時延和接入失敗率上升。

盡管,為了減小PRACH負荷,我們可以在每一幀里增加接入調度,不過,這會減少數據傳輸資源,導致上行信道數據傳輸容量吃緊。

還有,LTE幀中分配RA時隙有限。同時,PRACH前導序列采用的Zadoff -Chu序列處理,受限于物聯網設備的計算能力。

總之,LTE難以應付大規模物聯網設備接入,其引發的接入時延和接入失敗問題會影響傳統數據(和語音)業務,當然,這本身也會影響物聯網業務。

魚和熊掌不能兼得。

解決的辦法也是有的。

比如對人和物的接入請求進行分離,主要包括3種:強制分離機制,軟分離機制和混合分離機制。強制分離將人和物的接入請求完美隔離。軟分離是指人和物共享資源池,但具有不同的接入可能性。混合分離是前面兩者的混合。

比如Fast Adaptive Slotted Aloha技術,利用連續空閑或沖突時隙來估算網絡中激活的物聯網設備數量(網絡狀態),并迅速更新物聯網設備的傳輸可能性,從而減小接入時延。

比如分簇機制,在某個小區內隨機分布著物聯網設備,將物聯網設備分成多個簇,每一個簇里選出一個協調器(Coordinator),這個協調器是簇中唯一和基站直接通信的設備,并作為簇內其它設備與基站通信的中繼節點。這不但限制了同時接入基站的設備數量,而且降低了整個系統的功耗。

但是,所有的辦法“僅供研究和測試”,LTE和物聯網要水乳相融走向商用,還有很多工作要做。同時,物聯網應用場景包羅萬象,它對網絡的靈活性要求更高,怎么設計,怎么優化,如何才能不影響運營商的傳統業務(畢竟那里有更高的ARPU),都是擺在現實道路上難題。

那么,5G hold得住物聯網嗎?

massive MIMO, 異構網絡, 毫米波(mmWave),SDN/NFV,通常被認為5G的幾大關鍵技術。這些關鍵技術能適應物聯網需求嗎?

Massive MIMO

Massive MIMO通過在基站側部署多于小區終端數量的天線陣列,利用空間分集來提升頻譜效率,這一特點使基站可以同時接受多路傳輸,看起來非常適合于大規模的物聯網設備接入。問題是,大規模的物聯網設備接入需要在基站側部署多少天線?技術上能突破嗎?

異構網絡

我們說未來的網絡是異構網絡,網絡內部署很多small cells來解決網絡容量需求。

然而,這是為了解決容量,提升網速。對于物聯網,關鍵不是網絡速率,而是覆蓋,是可靠的和無所不在的連接,這和small cells解決熱點容量問題是背道而馳的。

人和物的需求場景完全不同。比如,鄉村的高速公路,是物聯網的關鍵覆蓋區域,但并不是數據流量密集區域。人與物在覆蓋上沒有一致性,這對于運營商在投資上并無經濟性可言。即使是在物聯網設備密集區域,物聯網業務帶來的ARPU值也遠遠低于傳統業務,如果考慮投資回報,運營商絕不愿意為了物聯網部署small cells。

毫米波(mmWave)

毫米波以其寬廣的頻譜資源向5G展示了無法抗拒的魅力。毫米波的特點是:速率快、覆蓋距離短和功耗大。這三個特點和物聯網需求完全相反,物聯網的特點是:速率低、覆蓋距離

毫米波以其寬廣的頻譜資源向5G展示了無法抗拒的魅力。毫米波的特點是:速率快、覆蓋距離短和功耗大。這三個特點和物聯網需求完全相反,物聯網的特點是:速率低、覆蓋距離遠和功耗足夠低。

SDN/NFV

軟件定義網絡(SDN)和網絡功能虛擬化(NFV)將物理網絡變得更抽象,利于網絡資源靈活管理和支持不同類型的業務。SDN/NFV根據不同的業務提供不同的數據流,且能動態調度已被虛擬化的網元功能,這對物聯網是極好的。

一方面,SDN可以將人與物業務分離,同時保障分離的邏輯網絡的QoS,能有效利用網絡資源,減輕大規模物聯網設備接入帶來的網絡問題。

另一方面,利用NFV可以根據流量需求對網絡結構進行動態管理。比如,NFV可以隨時根據流量需求,對某區域的網元進行功能“變形”,它可以是一個物聯網數據收集中心,也可以是用于擴展覆蓋的中繼,或者變回基站,以應對臨時的接入請求高峰。

事實上,SDN/NFV讓我們看到了未來“無限容量”網絡的可能。

但是,SDN/NFV將帶來網絡結構顛覆性的改變,甚至是對整個產業鏈的顛覆。設備商去推動虛擬化猶如自斷手臂,左右手互搏。即使運營商,決心有多大也是個未知數。

關鍵字:物聯網LTE隨機接入

本文摘自:51CTO

x 4G和5G不配物聯網 不過死撐 掃一掃
分享本文到朋友圈
當前位置:物聯網市場動態 → 正文

4G和5G不配物聯網 不過死撐

責任編輯:editor004 |來源:企業網D1Net  2016-08-16 14:26:44 本文摘自:51CTO

物聯網是決定未來經濟的關鍵技術。無所不在的萬物互聯終將成為現實。

然而,無所不在的物聯網覆蓋,沒那么容易。

ZigBee/6LoWPAN或IEEE 802.11ah等物聯網技術,僅適于短距離物聯網覆蓋,且無法保證可靠的網絡協調控制。衛星通信的成本讓人望而卻步,能耗高,且無法抵達室內。

時代在召喚,蜂窩網絡瀟灑走過來。

物聯網嬌軀一震,勾搭上了已覆蓋全球的2/3/4G網絡,跟他在一起可以至少少奮斗十年。

2/3/4G網絡就像富一代,成熟穩重,溫柔多金,還特有安全感。它網絡覆蓋廣,分布密集,有可靠的網絡協調控制,不僅能保證物聯網的安全性和有效性,且易于規劃、管理和監控。物聯網可直接接入現成的基站里,拎包入住,圓你一個別墅夢。

為了配合物聯網之嬌軀亂顛,2/3/4G網絡開始內外兼修,重振雄風。它增強覆蓋,降低功耗,減少設備復雜性,降低時延,最小化每Bit成本。

畢竟隔了幾代,力不從心的時候也是有的。

GSM容量有限,無法滿足大量設備同時接入。富一代很拼,它減小信令開銷,控制過載,收緊資源粒度,擴大覆蓋范圍,但是,這終究只是權宜之計,如補充雄性荷爾蒙,不是面向未來的根本之路,日子還長呢。GSM的功耗和接入時延讓物聯網領悟到了初夜的遺憾。

至于3G(UMTS),工作頻段更高,覆蓋范圍小,室內覆蓋差,同時,UMTS模塊比GSM模塊貴的多。Pass!

希望在LTE上?

夢寐易忘,初心難改。

LTE是為數據洪流而設計,一開始并沒有考慮物聯網需求。

講真,每次聽說LTE要熊抱物聯網,我就覺得它在死撐。

LTE網絡的特點是:設備少、流量大。少量的設備較之于海量的數據流量,信令流量幾乎可以忽略不計。

物聯網的特點是:設備多、流量小。海量的設備較之于零星的數據包,信令流量大爆發,引起網絡癱瘓也不是不可能的。

與物聯網在一起的LTE面對許多現實的挑戰,包括控制開銷、能效、覆蓋增強、魯棒性、安全和可擴展性等。

最擔心的是,物聯網業務和傳統語音、數據業務共存,當大規模物聯網設備接入時,如何避免對傳統業務的影響?

LTE的隨機接入過程(RACH)首先被擺上臺面。

當UE(手機)要和基站(eNodeB)建立數據連接時,為了和網絡建立同步,由UE觸發隨機接入過程。RACH由一系列時-頻資源組成,稱為RA時隙。UE在RA時隙里使用前導序列向eNodeB發送接入請求。

LTE隨機接入過程有兩種類型:非競爭的隨機接入和競爭的隨機接入。每個LTE小區有64個前導序列,分別用于非競爭和競爭的隨機接入。

非競爭的隨機接入由網絡控制,能避免沖突,減小接入時延,保障接入成功率,比如在切換場景中。這不影響物聯網業務。

影響物聯網業務的是基于競爭的隨機接入過程。

  (1) 前導序列傳輸(Message1)

(2) 隨機接入響應(Message2)

(3) Message3發送 (RRC Connection Request)

(4) 沖突解決消息(Message4)

在基于競爭的隨機接入過程中,會發生兩次沖突。

第一次沖突:

Message 1:UE隨機發送前導序列,請求接入。由于前導序列正交,同一RA時隙允許多個UE使用不同的前導序列。在這種情況下, eNodeB可解碼請求。

如果兩個或兩個以上的UE使用相同的前導序列,沖突就會發生,導致eNodeB無法檢測到請求。

當然,即使是多臺UE使用相同的前導序列,因為接收信號強度不同,eNodeB也可能能檢測到請求。但是,這會導致eNodeB向多個UE發送相同的Message2(隨機接入響應),從而將在Message 3處引發第二次沖突。

第二次沖突:

如果不同的UE收到相同的Message2,那么它們會獲得相同的上行資源,同時發送Message3,此時,第二次沖突發生。

隨機接入過程成為LTE熊抱物聯網的第一道挑戰,因為當大量物聯網設備同時嘗試接入基站時(比如發生地震時,某地區的所有地震監測器同時發出告警),會出現信令尖峰,從而引起PRACH過載,接入競爭可能性增加,接入時延和接入失敗率上升。

盡管,為了減小PRACH負荷,我們可以在每一幀里增加接入調度,不過,這會減少數據傳輸資源,導致上行信道數據傳輸容量吃緊。

還有,LTE幀中分配RA時隙有限。同時,PRACH前導序列采用的Zadoff -Chu序列處理,受限于物聯網設備的計算能力。

總之,LTE難以應付大規模物聯網設備接入,其引發的接入時延和接入失敗問題會影響傳統數據(和語音)業務,當然,這本身也會影響物聯網業務。

魚和熊掌不能兼得。

解決的辦法也是有的。

比如對人和物的接入請求進行分離,主要包括3種:強制分離機制,軟分離機制和混合分離機制。強制分離將人和物的接入請求完美隔離。軟分離是指人和物共享資源池,但具有不同的接入可能性。混合分離是前面兩者的混合。

比如Fast Adaptive Slotted Aloha技術,利用連續空閑或沖突時隙來估算網絡中激活的物聯網設備數量(網絡狀態),并迅速更新物聯網設備的傳輸可能性,從而減小接入時延。

比如分簇機制,在某個小區內隨機分布著物聯網設備,將物聯網設備分成多個簇,每一個簇里選出一個協調器(Coordinator),這個協調器是簇中唯一和基站直接通信的設備,并作為簇內其它設備與基站通信的中繼節點。這不但限制了同時接入基站的設備數量,而且降低了整個系統的功耗。

但是,所有的辦法“僅供研究和測試”,LTE和物聯網要水乳相融走向商用,還有很多工作要做。同時,物聯網應用場景包羅萬象,它對網絡的靈活性要求更高,怎么設計,怎么優化,如何才能不影響運營商的傳統業務(畢竟那里有更高的ARPU),都是擺在現實道路上難題。

那么,5G hold得住物聯網嗎?

massive MIMO, 異構網絡, 毫米波(mmWave),SDN/NFV,通常被認為5G的幾大關鍵技術。這些關鍵技術能適應物聯網需求嗎?

Massive MIMO

Massive MIMO通過在基站側部署多于小區終端數量的天線陣列,利用空間分集來提升頻譜效率,這一特點使基站可以同時接受多路傳輸,看起來非常適合于大規模的物聯網設備接入。問題是,大規模的物聯網設備接入需要在基站側部署多少天線?技術上能突破嗎?

異構網絡

我們說未來的網絡是異構網絡,網絡內部署很多small cells來解決網絡容量需求。

然而,這是為了解決容量,提升網速。對于物聯網,關鍵不是網絡速率,而是覆蓋,是可靠的和無所不在的連接,這和small cells解決熱點容量問題是背道而馳的。

人和物的需求場景完全不同。比如,鄉村的高速公路,是物聯網的關鍵覆蓋區域,但并不是數據流量密集區域。人與物在覆蓋上沒有一致性,這對于運營商在投資上并無經濟性可言。即使是在物聯網設備密集區域,物聯網業務帶來的ARPU值也遠遠低于傳統業務,如果考慮投資回報,運營商絕不愿意為了物聯網部署small cells。

毫米波(mmWave)

毫米波以其寬廣的頻譜資源向5G展示了無法抗拒的魅力。毫米波的特點是:速率快、覆蓋距離短和功耗大。這三個特點和物聯網需求完全相反,物聯網的特點是:速率低、覆蓋距離

毫米波以其寬廣的頻譜資源向5G展示了無法抗拒的魅力。毫米波的特點是:速率快、覆蓋距離短和功耗大。這三個特點和物聯網需求完全相反,物聯網的特點是:速率低、覆蓋距離遠和功耗足夠低。

SDN/NFV

軟件定義網絡(SDN)和網絡功能虛擬化(NFV)將物理網絡變得更抽象,利于網絡資源靈活管理和支持不同類型的業務。SDN/NFV根據不同的業務提供不同的數據流,且能動態調度已被虛擬化的網元功能,這對物聯網是極好的。

一方面,SDN可以將人與物業務分離,同時保障分離的邏輯網絡的QoS,能有效利用網絡資源,減輕大規模物聯網設備接入帶來的網絡問題。

另一方面,利用NFV可以根據流量需求對網絡結構進行動態管理。比如,NFV可以隨時根據流量需求,對某區域的網元進行功能“變形”,它可以是一個物聯網數據收集中心,也可以是用于擴展覆蓋的中繼,或者變回基站,以應對臨時的接入請求高峰。

事實上,SDN/NFV讓我們看到了未來“無限容量”網絡的可能。

但是,SDN/NFV將帶來網絡結構顛覆性的改變,甚至是對整個產業鏈的顛覆。設備商去推動虛擬化猶如自斷手臂,左右手互搏。即使運營商,決心有多大也是個未知數。

關鍵字:物聯網LTE隨機接入

本文摘自:51CTO

電子周刊
回到頂部

關于我們聯系我們版權聲明隱私條款廣告服務友情鏈接投稿中心招賢納士

企業網版權所有 ©2010-2024 京ICP備09108050號-6 京公網安備 11010502049343號

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 台北县| 淮滨县| 松桃| 西峡县| 德清县| 新化县| 茌平县| 望江县| 高清| 岐山县| 南江县| 资阳市| 尼勒克县| 长武县| 南陵县| 独山县| 卢龙县| 永顺县| 甘肃省| 喀喇| 襄垣县| 浦城县| 夹江县| 新营市| 吉林市| 招远市| 峡江县| 五原县| 香港 | 宝清县| 潞城市| 泽州县| 布尔津县| 紫云| 彭山县| 平利县| 潍坊市| 聂荣县| 高清| 健康| 平谷区|