大數據搭著信息時代的快車來到了我們的面前,數據的價值逐漸為人們所重視,同時也讓數據分析師的身價倍增。而隨著大數據分析工具等大數據應用技術的出現,未來的數據分析師又將遇到怎樣的挑戰和機遇呢?
工具搶了人的飯碗?
很多大數據分析工具的設計起點非常高,定位了數據分析過程中所需要的大部分功能。好的工具應該可以從數據前期整合、收集到挖掘、分析乃至末端的數據可視化的整個數據分析過程。
但如果僅憑這些就認定大數據分析工具能取代數據分析師,未免有些杞人憂天了。恰恰相反,大數據分析工具不是數據分析師的競爭者,而是協助者。工具本來就是為人服務的,數據分析師的專業素養讓其能很好的發揮大數據分析工具的性能,二者相輔相成,是友非敵。
企業的支持
雖然大數據的概念已經普及,但是很多企業還是留存有一些傳統的觀念。很多企業雖然重金聘用了數據分析師甚至是組建了數據分析師團隊,但是卻并沒有建立完善的數據價值體系。對數據分析工作缺乏理解與支持。
相對于數據管理,數據分析工的工作重心還應該放在“挖掘數據價值”上。企業與數據分析師直接缺少職能的溝通,將直接影響企業對數據分析師工作性質的定位;同時,企業應該建立數據庫并部署大數據分析工具,為了能更好地對接用戶,大數據魔鏡在功能橋接上,也為企業和數據分析師留有足夠的空間。
從幕后到臺前的轉變
以往的業務人員經常要磨破嘴皮才能得到別人的認同,而現在許多企業正在考慮讓數據分析師帶著數據分析結果去談業務。打算以“讓數據說話,以數據服人”去贏得客戶的信任。而主要的實施過程,是靠數據可視化技術來實現的。
數據可視化技術讓數據能以圖表和視頻的方式直觀地展示在人們面前,而數據分析師作為數據的管理者和挖掘者,是最適合不過的講解人了。這樣就要求數據分析師不僅要有扎實的數據分析能力,還要能提取數據精髓,并將之演講出來以獲得他人的認同。從幕后轉到臺前,這里面會需要許多技能,數據分析師的工作性質也將發生改變。
在大數據時代,數據分析師所扮演的角色不可能是一成不變的。而只有順應時代的潮流,響應時代的需要,數據分析師這個行業才能繼續生存并發展。其實,大數據分析工具,數據可視化這些技術的出現固然使行業受到了影響與挑戰,但對于數據分析師來說,未嘗不是一次擺脫傳統束縛的機遇!
網絡