精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當前位置:大數(shù)據(jù)業(yè)界動態(tài) → 正文

騰訊開放TDinsight機器學習平臺等政企大數(shù)據(jù)平臺

責任編輯:editor004 作者:陳利鑫 |來源:企業(yè)網(wǎng)D1Net  2017-12-18 11:18:25 本文摘自:INFOQ

2017 年 6 月 16 日,騰訊新一代高性能計算平臺 Angel 在 Github 上低調(diào)開源。時隔半年,12 月 13 日,騰訊在“2017互聯(lián)網(wǎng)+大數(shù)據(jù)高峰論壇”發(fā)布“騰訊慧聚”品牌,其中就包括機器學習基礎平臺TDinsight。與Angel和其他機器學習平臺相比,TDinsight有何優(yōu)勢?

TDinsight機器學習平臺

“騰訊慧聚”包括五大數(shù)據(jù)平臺,分別是大數(shù)據(jù)一站式平臺Dmaster、大規(guī)模事務處理平臺Tbase、大數(shù)據(jù)實時接入平臺TDbank、大數(shù)據(jù)實時多維分析平臺Hermes,以及機器學習基礎平臺TDinsight。

據(jù)騰訊互聯(lián)網(wǎng)+大數(shù)據(jù)產(chǎn)品中心總經(jīng)理劉煜宏介紹,TDinsight機器學習平臺提供一站式的機器學習平臺,通過可視化的拖曳布局,組合各種數(shù)據(jù)源、組件、算法、模型和評估模塊,支持各種主流的開源機器學習框架,包括Spark、Python、R、XGBoost。覆蓋特征工程、分類、聚類、回歸、關(guān)聯(lián)規(guī)則、時間序列等傳統(tǒng)機器學習算法的同時,支持圖算法、深度學習等更加豐富的算法庫,讓用戶可以快速接入人工智能,釋放數(shù)據(jù)潛力。

那么,TDinsight機器學習平臺相比其他相似產(chǎn)品有何優(yōu)勢?這個平臺是否開源?是否意味著騰訊以后將會開放自己的AI能力呢?

對此,騰訊互聯(lián)網(wǎng)+大數(shù)據(jù)產(chǎn)品中心總經(jīng)理劉煜宏說道:“騰訊有幾個AI部門,包括提到的優(yōu)圖、醫(yī)療覓影,就是很好的AI跟行業(yè)結(jié)合很好的案例,所以騰訊AI能力一直體現(xiàn)在我們產(chǎn)品里,現(xiàn)在也單獨拿出來開放了。TDinsight是機器學習基礎平臺,騰訊大數(shù)據(jù)去年發(fā)布的Angel在6月份開源了,Angel是一個面向機器學習的分布式高性能計算平臺。那Angel跟TDinsight是什么關(guān)系呢?其實TDinsight你可以認為是一個機器學習的調(diào)度平臺,但是又不僅僅是調(diào)度平臺,TDinsight自身包含多種算法以及模型,并且支持多源的輸入以及輸出,TDinsight采用拖拽的方式能夠根據(jù)不同的算法、模型調(diào)度對應不同的機器學習組件(框架),例如:Angel、Spark、TensorFlow、Torch等,完成機器學習整個流程。”

雖然TDinsight目前已經(jīng)對政企開放,但開源似乎還是一件遙不可期的事情,劉煜宏表示,“我們也是跟各行各業(yè)的定制需求結(jié)合,目前要開源出來還不是很好的時機,現(xiàn)在騰訊公司開源的也越來越多,包括大數(shù)據(jù)是來源于開源。我們還是會回歸到社區(qū)里,包括Tbase,已經(jīng)與社區(qū)結(jié)合得非常緊密,是非常核心的開源,包括資源調(diào)度管理平臺,調(diào)度是在全球計算能力領(lǐng)先的很重要的模塊。所以大數(shù)據(jù)開源會越來越多,但不像安卓整體開源,我們也會結(jié)合社區(qū)化把很多東西反饋到里面。”

Angel機器學習平臺

Angel平臺是使用Java和Scala混合開發(fā)的機器學習框架,用戶可以像用Spark, MapReduce一樣,用它來完成機器學習的模型訓練。2017 年 6 月 16 日,騰訊新一代高性能計算平臺 Angel 在 Github 上低調(diào)開源。

Angel采用參數(shù)服務器架構(gòu),支持十億級別維度的模型訓練。采用了多種業(yè)界最新技術(shù)和騰訊自主研發(fā)技術(shù),如SSP(Stale synchronous Parallel)、異步分布式SGD、多線程參數(shù)共享模式HogWild、網(wǎng)絡帶寬流量調(diào)度算法、計算和網(wǎng)絡請求流水化、參數(shù)更新索引和訓練數(shù)據(jù)預處理方案等。

這些技術(shù)使Angel性能大幅提高,達到常見開源系統(tǒng)Spark的數(shù)倍到數(shù)十倍,能在千萬到十億級的特征維度條件下運行。

自2016年初在騰訊內(nèi)部上線以來,Angel已應用于騰訊視頻、騰訊社交廣告及用戶畫像挖掘等精準推薦業(yè)務。未來還將不斷拓展應用場景,目標是支持騰訊等企業(yè)級大規(guī)模機器學習任務。

Angel相關(guān)鏈接:https://s.geekbang.org/search/c=0/k=Angel/t=

感謝徐川對本文的審校。

給InfoQ中文站投稿或者參與內(nèi)容翻譯工作,請郵件至[email protected]。也歡迎大家通過新浪微博(@InfoQ,@丁曉昀),微信(微信號:InfoQChina)關(guān)注我們。

評價本文

專業(yè)度風格編輯觀點主編觀點              此內(nèi)容所在的主題為語言 & 開發(fā)告訴我們您的想法社區(qū)評論         2860000},{"score":77901,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/tencent-pigeon-real-time-accurate-push-system/zh/smallimage/ganhengtong100-1512916635657.jpg","url":"http://www.infoq.com/cn/presentations/tencent-pigeon-real-time-accurate-push-system","title":"騰訊信鴿實時精準推送系統(tǒng)的演進與實踐","authorsList":["甘恒通"],"itemPath":"/presentations/tencent-pigeon-real-time-accurate-push-system","contentType":"presentations","date":1512945360000},{"score":75815,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/big-data-platforms-and-architectures-for-global-services/zh/smallimage/renxiawei100-1512039472271.jpg","url":"http://www.infoq.com/cn/presentations/big-data-platforms-and-architectures-for-global-services","title":"精益創(chuàng)新:從 0 到 1 構(gòu)建服務全球的大數(shù)據(jù)平臺和架構(gòu)","authorsList":["夏衛(wèi)"],"itemPath":"/presentations/big-data-platforms-and-architectures-for-global-services","contentType":"presentations","date":1512340740000},{"score":68001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/build-deploy-scalable-machine-learning-production-kafka/zh/smallimage/GettyImages-578583314-2-1510071286006.jpg","url":"http://www.infoq.com/cn/articles/build-deploy-scalable-machine-learning-production-kafka","title":"在生產(chǎn)環(huán)境使用Kafka構(gòu)建和部署大規(guī)模機器學習","authorsList":["Kai Waehner"],"itemPath":"/articles/build-deploy-scalable-machine-learning-production-kafka","contentType":"articles","date":1510096200000},{"score":67413,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/yiguan-bigdata-architecture-evolution-guowei/zh/smallimage/api-facades-logo-1509891971352.jpg","url":"http://www.infoq.com/cn/articles/yiguan-bigdata-architecture-evolution-guowei","title":"易觀 CTO 郭煒:易觀大數(shù)據(jù)架構(gòu)的變遷","authorsList":["趙新龍"],"itemPath":"/articles/yiguan-bigdata-architecture-evolution-guowei","contentType":"articles","date":1509923940000},{"score":67413,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/big-data-in-finance/zh/smallimage/logo-ieee-1508304511929.jpeg","url":"http://www.infoq.com/cn/articles/big-data-in-finance","title":"海量數(shù)據(jù)與海量金錢:大數(shù)據(jù)在金融領(lǐng)域的作用","authorsList":["Jennifer Q. Trelewicz"],"itemPath":"/articles/big-data-in-finance","contentType":"articles","date":1509923700000},{"score":65901,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/prepare-text-data-machine-learning-scikit-learn/zh/smallimage/GettyImages-508140566-1509378737592.jpg","url":"http://www.infoq.com/cn/articles/prepare-text-data-machine-learning-scikit-learn","title":"如何使用Scikit-learn實現(xiàn)用于機器學習的文本數(shù)據(jù)準備","authorsList":["Jason Brownlee"],"itemPath":"/articles/prepare-text-data-machine-learning-scikit-learn","contentType":"articles","date":1509490080000},{"score":63512,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/industrial-big-data/zh/smallimage/redis-logo-1508773153565.jpg","url":"http://www.infoq.com/cn/articles/industrial-big-data","title":"三位一體的工業(yè)大數(shù)據(jù)綜述","authorsList":["朱武"],"itemPath":"/articles/industrial-big-data","contentType":"articles","date":1508797920000},{"score":61413,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/self-discipline-of-machine-learning-platform/zh/smallimage/logo-mobile-1508167959202.jpeg","url":"http://www.infoq.com/cn/articles/self-discipline-of-machine-learning-platform","title":"道器相融,論一個優(yōu)秀機器學習平臺的自我修養(yǎng)","authorsList":["黃明"],"itemPath":"/articles/self-discipline-of-machine-learning-platform","contentType":"articles","date":1508195640000},{"score":61401,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/machine-learning-in-blockchain-technologies/zh/smallimage/logo232-1508062753415.jpeg","url":"http://www.infoq.com/cn/articles/machine-learning-in-blockchain-technologies","title":"區(qū)塊鏈技術(shù)中的機器學習","authorsList":["Cryptics"],"itemPath":"/articles/machine-learning-in-blockchain-technologies","contentType":"articles","date":1508193120000},{"score":59001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/four-dimensions-of-large-machine-learning-framework/zh/smallimage/budong.jpg","url":"http://www.infoq.com/cn/articles/four-dimensions-of-large-machine-learning-framework","title":"后臺程序員轉(zhuǎn)算法的參考秘籍:大規(guī)模機器學習框架的四重境界","authorsList":["張紅林"],"itemPath":"/articles/four-dimensions-of-large-machine-learning-framework","contentType":"articles","date":1507501560000},{"score":57801,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/a-comparison-of-distributed-machine-learning-platforms/zh/smallimage/series-logo-small-1506775223348.jpg","url":"http://www.infoq.com/cn/articles/a-comparison-of-distributed-machine-learning-platforms","title":"分布式機器學習平臺大比拼:Spark、PMLS、TensorFlow、MXNet","authorsList":["Murat Demirbas"],"itemPath":"/articles/a-comparison-of-distributed-machine-learning-platforms","contentType":"articles","date":1507161120000},{"score":50010,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/from-distributed-management-to-multi-tenant-implementation/zh/smallimage/logo-2 (1).jpg","url":"http://www.infoq.com/cn/articles/from-distributed-management-to-multi-tenant-implementation","title":"從分布式管理到多租戶實現(xiàn),企業(yè)級大數(shù)據(jù)系統(tǒng)如何利用開源生態(tài)構(gòu)建?","authorsList":["陳冬"],"itemPath":"/articles/from-distributed-management-to-multi-tenant-implementation","contentType":"articles","date":1503439320000},{"score":50010,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/qiniu-big-data-platform-evolution-and-analysis/zh/smallimage/logo-ieee.jpg","url":"http://www.infoq.com/cn/articles/qiniu-big-data-platform-evolution-and-analysis","title":"七牛大數(shù)據(jù)平臺的演進與大數(shù)據(jù)分析實踐","authorsList":["孫健波"],"itemPath":"/articles/qiniu-big-data-platform-evolution-and-analysis","contentType":"articles","date":1503008400000},{"score":50010,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/kuaishou-live-experience-optimization/zh/smallimage/luowei100.jpg","url":"http://www.infoq.com/cn/presentations/kuaishou-live-experience-optimization","title":"快手在大數(shù)據(jù)驅(qū)動下的直播體驗優(yōu)化","authorsList":["羅喆"],"itemPath":"/presentations/kuaishou-live-experience-optimization","contentType":"presentations","date":1501455000000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/data-virtualization--ai-and-machine-learning/zh/smallimage/agile-logo.jpg","url":"http://www.infoq.com/cn/articles/data-virtualization--ai-and-machine-learning","title":"數(shù)據(jù)虛擬化:為AI與機器學習實現(xiàn)數(shù)據(jù)解鎖","authorsList":["Robert Alexander"],"itemPath":"/articles/data-virtualization--ai-and-machine-learning","contentType":"articles","date":1504758060000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/cortana-azure-machine-learning/zh/smallimage/agile.jpg","url":"http://www.infoq.com/cn/articles/cortana-azure-machine-learning","title":"Cortana智能與機器學習博客 將人工智能引入商務智能——Azure Machine Learning中的文本分析","authorsList":["Mary Wahl"],"itemPath":"/articles/cortana-azure-machine-learning","contentType":"articles","date":1504736160000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/summary-of-benchmark-algorithms-for-fast-machine-learning/zh/smallimage/agile-logo (1).jpg","url":"http://www.infoq.com/cn/articles/summary-of-benchmark-algorithms-for-fast-machine-learning","title":"總結(jié)自快速機器學習算法基準測試的重要經(jīng)驗","authorsList":["Miguel Fierro"],"itemPath":"/articles/summary-of-benchmark-algorithms-for-fast-machine-learning","contentType":"articles","date":1504733400000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/program-techniques-computational-models-xgboost-mxnet/zh/smallimage/logo 112 (3).jpg","url":"http://www.infoq.com/cn/articles/program-techniques-computational-models-xgboost-mxnet","title":"大規(guī)模機器學習的編程技術(shù)、計算模型以及Xgboost和MXNet案例","authorsList":["陳華清"],"itemPath":"/articles/program-techniques-computational-models-xgboost-mxnet","contentType":"articles","date":1503613080000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/miniflow-build-machine-learning-infrastructure-platform/zh/smallimage/agile-logo.jpg","url":"http://www.infoq.com/cn/articles/miniflow-build-machine-learning-infrastructure-platform","title":"從算法實現(xiàn)到MiniFlow實現(xiàn),打造機器學習的基礎架構(gòu)平臺","authorsList":["陳迪豪"],"itemPath":"/articles/miniflow-build-machine-learning-infrastructure-platform","contentType":"articles","date":1501540920000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/agile-development-of-artificial-intelligence-applications/zh/smallimage/java-logo2.jpg","url":"http://www.infoq.com/cn/articles/agile-development-of-artificial-intelligence-applications","title":"機器學習的最小可用產(chǎn)品:人工智能應用的敏捷開發(fā)","authorsList":["田楓"],"itemPath":"/articles/agile-development-of-artificial-intelligence-applications","contentType":"articles","date":1501193820000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/enter-tencent-audio-and-video-quality-system/zh/smallimage/luobida100.jpg","url":"http://www.infoq.com/cn/presentations/enter-tencent-audio-and-video-quality-system","title":"直面音視頻質(zhì)量評估之痛——走進騰訊音視頻質(zhì)量體系","authorsList":["羅必達"],"itemPath":"/presentations/enter-tencent-audio-and-video-quality-system","contentType":"presentations","date":1500850500000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/machine-learning-with-javascript-part02/zh/smallimage/logo (23).jpg","url":"http://www.infoq.com/cn/articles/machine-learning-with-javascript-part02","title":"機器學習與JavaScript(二)","authorsList":["Abhishek Soni"],"itemPath":"/articles/machine-learning-with-javascript-part02","contentType":"articles","date":1499379540000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/why-tencent-embrace-open-source/zh/smallimage/agile-logo (1).jpg","url":"http://www.infoq.com/cn/articles/why-tencent-embrace-open-source","title":"一向封閉的騰訊,為什么也開始擁抱開源了?","authorsList":["郭蕾"],"itemPath":"/articles/why-tencent-embrace-open-source","contentType":"articles","date":1499293140000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/machine-learning-with-javascript-part01/zh/smallimage/logo (23).jpg","url":"http://www.infoq.com/cn/articles/machine-learning-with-javascript-part01","title":"機器學習與JavaScript(一)","authorsList":["Abhishek Soni"],"itemPath":"/articles/machine-learning-with-javascript-part01","contentType":"articles","date":1499120280000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/ios-11-machine-learning-for-everyone/zh/smallimage/logo-devops.jpg","url":"http://www.infoq.com/cn/articles/ios-11-machine-learning-for-everyone","title":"iOS 11:人人可體驗的機器學習","authorsList":["Matthijs Hollemans"],"itemPath":"/articles/ios-11-machine-learning-for-everyone","contentType":"articles","date":1499033460000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/interviews/interview-with-shaoyingxia-talk-machine-learning-practice/zh/smallimage/shaoyingxia100.jpg","url":"http://www.infoq.com/cn/interviews/interview-with-shaoyingxia-talk-machine-learning-practice","title":"專訪明略數(shù)據(jù)邵鎣俠:傳統(tǒng)公安領(lǐng)域的機器學習實踐","authorsList":["邵鎣俠"],"itemPath":"/interviews/interview-with-shaoyingxia-talk-machine-learning-practice","contentType":"interviews","date":1498515480000},{"score":19,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/AI-front-201711/zh/smallimage/100-1512039046816.jpg","url":"http://www.infoq.com/cn/minibooks/AI-front-201711","title":"AI前線(2017年11月)","authorsList":["InfoQ中文站"],"itemPath":"/minibooks/AI-front-201711","contentType":"minibooks","date":1512038700000},{"score":18,"topicsIds":null,"imageStoragePath":null,"url":"http://www.infoq.com/cn/news/2017/11/why-amazon-sagemaker-important","title":"為什么你應該關(guān)注Amazon SageMaker","authorsList":["楊賽"],"itemPath":"/news/2017/11/why-amazon-sagemaker-important","contentType":"news","date":1512023400000},{"score":18,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/interviews/interview-with-gurinder-talk-paypal-change-industry-with-data/zh/smallimage/gre100-1511260121674.jpg","url":"http://www.infoq.com/cn/interviews/interview-with-gurinder-talk-paypal-change-industry-with-data","title":"PayPal首席架構(gòu)師Gurinder:我們正在用數(shù)據(jù)改變行業(yè)","authorsList":["Gurinder"],"itemPath":"/interviews/interview-with-gurinder-talk-paypal-change-industry-with-data","contentType":"interviews","date":1511389260000},{"score":18,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/tensorflow-programing/zh/smallimage/100-1510627875939.jpg","url":"http://www.infoq.com/cn/minibooks/tensorflow-programing","title":"深度學習利器:TensorFlow程序設計","authorsList":["武維"],"itemPath":"/minibooks/tensorflow-programing","contentType":"minibooks","date":1510704000000},{"score":17,"topicsIds":null,"imageStoragePath":null,"url":"http://www.infoq.com/cn/news/2017/12/tensorflow-lite","title":"TensorFlow Lite支持設備內(nèi)置會話建模","authorsList":["Srini Penchikala"],"itemPath":"/news/2017/12/tensorflow-lite","contentType":"news","date":1512604800000},{"score":15,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/fpga-computational-performance/zh/smallimage/logo-small-1510653556493.jpg","url":"http://www.infoq.com/cn/articles/fpga-computational-performance","title":"FPGA掌控計算性能","authorsList":["Rob Taylor"],"itemPath":"/articles/fpga-computational-performance","contentType":"articles","date":1512341400000},{"score":15,"topicsIds":null,"imageStoragePath":null,"url":"http://www.infoq.com/cn/news/2017/11/knowledge-graph-articles","title":"你不得不看的六篇知識圖譜落地好文","authorsList":["杜小芳","陳思"],"itemPath":"/news/2017/11/knowledge-graph-articles","contentType":"news","date":1511221200000},{"score":15,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/4-Paradigm-Technology/zh/smallimage/100-1508808795050.jpg","url":"http://www.infoq.com/cn/minibooks/4-Paradigm-Technology","title":"架構(gòu)師特刊:范式大學","authorsList":["InfoQ中文站"],"itemPath":"/minibooks/4-Paradigm-Technology","contentType":"minibooks","date":1508808480000},{"score":14,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/integrate-data-analysis-platform/zh/smallimage/kafak-1511695415195.jpg","url":"http://www.infoq.com/cn/articles/integrate-data-analysis-platform","title":"如何整合復雜技術(shù)打造數(shù)據(jù)分析平臺?","authorsList":["萬曉川"],"itemPath":"/articles/integrate-data-analysis-platform","contentType":"articles","date":1511910420000},{"score":14,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/TensorFlow-indepth/zh/smallimage/100-1506507611643.jpg","url":"http://www.infoq.com/cn/minibooks/TensorFlow-indepth","title":"架構(gòu)師特刊:深入淺出TensorFlow","authorsList":["鄭澤宇"],"itemPath":"/minibooks/TensorFlow-indepth","contentType":"minibooks","date":1508370720000},{"score":14,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/toptech10/zh/smallimage/100-1508127572572.jpg","url":"http://www.infoq.com/cn/minibooks/toptech10","title":"中國頂尖技術(shù)團隊訪談錄·第十季","authorsList":["InfoQ中文站"],"itemPath":"/minibooks/toptech10","contentType":"minibooks","date":1508195700000},{"score":13,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/unit-language-understanding-and-interaction-technology/zh/smallimage/sunke100-1509711991338.jpg","url":"http://www.infoq.com/cn/presentations/unit-language-understanding-and-interaction-technology","title":"UNIT:語言理解與交互技術(shù)","authorsList":["孫珂"],"itemPath":"/presentations/unit-language-understanding-and-interaction-technology","contentType":"presentations","date":1510182120000}]";var whitepaperVcrsJson = null;var topicSponsorshipJson = "{"iconLink":"/infoq/url.action?i=17062&t=f","iconHref":"https://res.infoq.com/sponsorship/featuredcategory/6821/logo-1512699527324.jpg","id":1580}";var vcrOptionalListJson = null;var contentDatetimeFormat='yyyy年M月d日';var contentUriMapping="news";JSi18n.relatedRightbar_relatedContent='相關(guān)內(nèi)容';JSi18n.relatedRightbar_sponsoredContent='贊助商內(nèi)容';JSi18n.relatedRightbar_sponsoredBy='贊助商';var topicIds = "2088,2178,171,3169";var communityIds = "2497,2498";var company = ""; var intervalRightbar = setInterval(function() { if (window.vcrsLoaded) { clearInterval(intervalRightbar); if(company != null && company != "") { whitepaperVcrsJson = VCR.filterByCompany(company, window.vcrList); } else { whitepaperVcrsJson = VCR.getByTopicsAndCommunities(window.vcrList, topicIds, communityIds, 5, false, null); } vcrOptionalListJson = VCR.getByTopicsAndCommunities(window.vcrList, topicIds, communityIds, 10, true, null); relatedRightbar.rightbarDisplay(recomJson, whitepaperVcrsJson, topicSponsorshipJson); // track the impression // f_vcrrightbar_sponsorship is available at document ready Tracker.doTrackVcrRightbarImpressions("f_vcrrightbar_sponsorship_top_2"); Tracker.doTrackVcrRightbarBoxesImpressions("f_sponsorbox_top_2"); // only do the tracking here so that all GA vars are initialized if(relatedRightbar.whitepaperWidgetDisplayed){ _gaq.push(['_setCustomVar', 1, 'Whitepaper widget Related Rightbar', "Display", 3]); } optionalVcrBox.parseVendorContentOptionalList(vcrOptionalListJson); // get the version to display optionalVcrBox.abTestVersion = ABTesting.getABTestVersion(); // do the display after page is ready, GA banners all load after page is ready, all GA tracking js vars are available at that time also. No need to do this earlier optionalVcrBox.optionalVcrBoxDisplayAdBlock(); // tracking is done only if not done already! (when the gam event fires before document ready and we do not have the _gaq var available) optionalVcrBox.doTracking("top"); optionalVcrBox.doTracking("bottom"); window.finishedRightbarVcr = true; } }, 200);

關(guān)鍵字:InfoQ機器學習

本文摘自:INFOQ

x 騰訊開放TDinsight機器學習平臺等政企大數(shù)據(jù)平臺 掃一掃
分享本文到朋友圈
當前位置:大數(shù)據(jù)業(yè)界動態(tài) → 正文

騰訊開放TDinsight機器學習平臺等政企大數(shù)據(jù)平臺

責任編輯:editor004 作者:陳利鑫 |來源:企業(yè)網(wǎng)D1Net  2017-12-18 11:18:25 本文摘自:INFOQ

2017 年 6 月 16 日,騰訊新一代高性能計算平臺 Angel 在 Github 上低調(diào)開源。時隔半年,12 月 13 日,騰訊在“2017互聯(lián)網(wǎng)+大數(shù)據(jù)高峰論壇”發(fā)布“騰訊慧聚”品牌,其中就包括機器學習基礎平臺TDinsight。與Angel和其他機器學習平臺相比,TDinsight有何優(yōu)勢?

TDinsight機器學習平臺

“騰訊慧聚”包括五大數(shù)據(jù)平臺,分別是大數(shù)據(jù)一站式平臺Dmaster、大規(guī)模事務處理平臺Tbase、大數(shù)據(jù)實時接入平臺TDbank、大數(shù)據(jù)實時多維分析平臺Hermes,以及機器學習基礎平臺TDinsight。

據(jù)騰訊互聯(lián)網(wǎng)+大數(shù)據(jù)產(chǎn)品中心總經(jīng)理劉煜宏介紹,TDinsight機器學習平臺提供一站式的機器學習平臺,通過可視化的拖曳布局,組合各種數(shù)據(jù)源、組件、算法、模型和評估模塊,支持各種主流的開源機器學習框架,包括Spark、Python、R、XGBoost。覆蓋特征工程、分類、聚類、回歸、關(guān)聯(lián)規(guī)則、時間序列等傳統(tǒng)機器學習算法的同時,支持圖算法、深度學習等更加豐富的算法庫,讓用戶可以快速接入人工智能,釋放數(shù)據(jù)潛力。

那么,TDinsight機器學習平臺相比其他相似產(chǎn)品有何優(yōu)勢?這個平臺是否開源?是否意味著騰訊以后將會開放自己的AI能力呢?

對此,騰訊互聯(lián)網(wǎng)+大數(shù)據(jù)產(chǎn)品中心總經(jīng)理劉煜宏說道:“騰訊有幾個AI部門,包括提到的優(yōu)圖、醫(yī)療覓影,就是很好的AI跟行業(yè)結(jié)合很好的案例,所以騰訊AI能力一直體現(xiàn)在我們產(chǎn)品里,現(xiàn)在也單獨拿出來開放了。TDinsight是機器學習基礎平臺,騰訊大數(shù)據(jù)去年發(fā)布的Angel在6月份開源了,Angel是一個面向機器學習的分布式高性能計算平臺。那Angel跟TDinsight是什么關(guān)系呢?其實TDinsight你可以認為是一個機器學習的調(diào)度平臺,但是又不僅僅是調(diào)度平臺,TDinsight自身包含多種算法以及模型,并且支持多源的輸入以及輸出,TDinsight采用拖拽的方式能夠根據(jù)不同的算法、模型調(diào)度對應不同的機器學習組件(框架),例如:Angel、Spark、TensorFlow、Torch等,完成機器學習整個流程。”

雖然TDinsight目前已經(jīng)對政企開放,但開源似乎還是一件遙不可期的事情,劉煜宏表示,“我們也是跟各行各業(yè)的定制需求結(jié)合,目前要開源出來還不是很好的時機,現(xiàn)在騰訊公司開源的也越來越多,包括大數(shù)據(jù)是來源于開源。我們還是會回歸到社區(qū)里,包括Tbase,已經(jīng)與社區(qū)結(jié)合得非常緊密,是非常核心的開源,包括資源調(diào)度管理平臺,調(diào)度是在全球計算能力領(lǐng)先的很重要的模塊。所以大數(shù)據(jù)開源會越來越多,但不像安卓整體開源,我們也會結(jié)合社區(qū)化把很多東西反饋到里面。”

Angel機器學習平臺

Angel平臺是使用Java和Scala混合開發(fā)的機器學習框架,用戶可以像用Spark, MapReduce一樣,用它來完成機器學習的模型訓練。2017 年 6 月 16 日,騰訊新一代高性能計算平臺 Angel 在 Github 上低調(diào)開源。

Angel采用參數(shù)服務器架構(gòu),支持十億級別維度的模型訓練。采用了多種業(yè)界最新技術(shù)和騰訊自主研發(fā)技術(shù),如SSP(Stale synchronous Parallel)、異步分布式SGD、多線程參數(shù)共享模式HogWild、網(wǎng)絡帶寬流量調(diào)度算法、計算和網(wǎng)絡請求流水化、參數(shù)更新索引和訓練數(shù)據(jù)預處理方案等。

這些技術(shù)使Angel性能大幅提高,達到常見開源系統(tǒng)Spark的數(shù)倍到數(shù)十倍,能在千萬到十億級的特征維度條件下運行。

自2016年初在騰訊內(nèi)部上線以來,Angel已應用于騰訊視頻、騰訊社交廣告及用戶畫像挖掘等精準推薦業(yè)務。未來還將不斷拓展應用場景,目標是支持騰訊等企業(yè)級大規(guī)模機器學習任務。

Angel相關(guān)鏈接:https://s.geekbang.org/search/c=0/k=Angel/t=

感謝徐川對本文的審校。

給InfoQ中文站投稿或者參與內(nèi)容翻譯工作,請郵件至[email protected]。也歡迎大家通過新浪微博(@InfoQ,@丁曉昀),微信(微信號:InfoQChina)關(guān)注我們。

評價本文

專業(yè)度風格編輯觀點主編觀點              此內(nèi)容所在的主題為語言 & 開發(fā)告訴我們您的想法社區(qū)評論         2860000},{"score":77901,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/tencent-pigeon-real-time-accurate-push-system/zh/smallimage/ganhengtong100-1512916635657.jpg","url":"http://www.infoq.com/cn/presentations/tencent-pigeon-real-time-accurate-push-system","title":"騰訊信鴿實時精準推送系統(tǒng)的演進與實踐","authorsList":["甘恒通"],"itemPath":"/presentations/tencent-pigeon-real-time-accurate-push-system","contentType":"presentations","date":1512945360000},{"score":75815,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/big-data-platforms-and-architectures-for-global-services/zh/smallimage/renxiawei100-1512039472271.jpg","url":"http://www.infoq.com/cn/presentations/big-data-platforms-and-architectures-for-global-services","title":"精益創(chuàng)新:從 0 到 1 構(gòu)建服務全球的大數(shù)據(jù)平臺和架構(gòu)","authorsList":["夏衛(wèi)"],"itemPath":"/presentations/big-data-platforms-and-architectures-for-global-services","contentType":"presentations","date":1512340740000},{"score":68001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/build-deploy-scalable-machine-learning-production-kafka/zh/smallimage/GettyImages-578583314-2-1510071286006.jpg","url":"http://www.infoq.com/cn/articles/build-deploy-scalable-machine-learning-production-kafka","title":"在生產(chǎn)環(huán)境使用Kafka構(gòu)建和部署大規(guī)模機器學習","authorsList":["Kai Waehner"],"itemPath":"/articles/build-deploy-scalable-machine-learning-production-kafka","contentType":"articles","date":1510096200000},{"score":67413,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/yiguan-bigdata-architecture-evolution-guowei/zh/smallimage/api-facades-logo-1509891971352.jpg","url":"http://www.infoq.com/cn/articles/yiguan-bigdata-architecture-evolution-guowei","title":"易觀 CTO 郭煒:易觀大數(shù)據(jù)架構(gòu)的變遷","authorsList":["趙新龍"],"itemPath":"/articles/yiguan-bigdata-architecture-evolution-guowei","contentType":"articles","date":1509923940000},{"score":67413,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/big-data-in-finance/zh/smallimage/logo-ieee-1508304511929.jpeg","url":"http://www.infoq.com/cn/articles/big-data-in-finance","title":"海量數(shù)據(jù)與海量金錢:大數(shù)據(jù)在金融領(lǐng)域的作用","authorsList":["Jennifer Q. Trelewicz"],"itemPath":"/articles/big-data-in-finance","contentType":"articles","date":1509923700000},{"score":65901,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/prepare-text-data-machine-learning-scikit-learn/zh/smallimage/GettyImages-508140566-1509378737592.jpg","url":"http://www.infoq.com/cn/articles/prepare-text-data-machine-learning-scikit-learn","title":"如何使用Scikit-learn實現(xiàn)用于機器學習的文本數(shù)據(jù)準備","authorsList":["Jason Brownlee"],"itemPath":"/articles/prepare-text-data-machine-learning-scikit-learn","contentType":"articles","date":1509490080000},{"score":63512,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/industrial-big-data/zh/smallimage/redis-logo-1508773153565.jpg","url":"http://www.infoq.com/cn/articles/industrial-big-data","title":"三位一體的工業(yè)大數(shù)據(jù)綜述","authorsList":["朱武"],"itemPath":"/articles/industrial-big-data","contentType":"articles","date":1508797920000},{"score":61413,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/self-discipline-of-machine-learning-platform/zh/smallimage/logo-mobile-1508167959202.jpeg","url":"http://www.infoq.com/cn/articles/self-discipline-of-machine-learning-platform","title":"道器相融,論一個優(yōu)秀機器學習平臺的自我修養(yǎng)","authorsList":["黃明"],"itemPath":"/articles/self-discipline-of-machine-learning-platform","contentType":"articles","date":1508195640000},{"score":61401,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/machine-learning-in-blockchain-technologies/zh/smallimage/logo232-1508062753415.jpeg","url":"http://www.infoq.com/cn/articles/machine-learning-in-blockchain-technologies","title":"區(qū)塊鏈技術(shù)中的機器學習","authorsList":["Cryptics"],"itemPath":"/articles/machine-learning-in-blockchain-technologies","contentType":"articles","date":1508193120000},{"score":59001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/four-dimensions-of-large-machine-learning-framework/zh/smallimage/budong.jpg","url":"http://www.infoq.com/cn/articles/four-dimensions-of-large-machine-learning-framework","title":"后臺程序員轉(zhuǎn)算法的參考秘籍:大規(guī)模機器學習框架的四重境界","authorsList":["張紅林"],"itemPath":"/articles/four-dimensions-of-large-machine-learning-framework","contentType":"articles","date":1507501560000},{"score":57801,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/a-comparison-of-distributed-machine-learning-platforms/zh/smallimage/series-logo-small-1506775223348.jpg","url":"http://www.infoq.com/cn/articles/a-comparison-of-distributed-machine-learning-platforms","title":"分布式機器學習平臺大比拼:Spark、PMLS、TensorFlow、MXNet","authorsList":["Murat Demirbas"],"itemPath":"/articles/a-comparison-of-distributed-machine-learning-platforms","contentType":"articles","date":1507161120000},{"score":50010,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/from-distributed-management-to-multi-tenant-implementation/zh/smallimage/logo-2 (1).jpg","url":"http://www.infoq.com/cn/articles/from-distributed-management-to-multi-tenant-implementation","title":"從分布式管理到多租戶實現(xiàn),企業(yè)級大數(shù)據(jù)系統(tǒng)如何利用開源生態(tài)構(gòu)建?","authorsList":["陳冬"],"itemPath":"/articles/from-distributed-management-to-multi-tenant-implementation","contentType":"articles","date":1503439320000},{"score":50010,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/qiniu-big-data-platform-evolution-and-analysis/zh/smallimage/logo-ieee.jpg","url":"http://www.infoq.com/cn/articles/qiniu-big-data-platform-evolution-and-analysis","title":"七牛大數(shù)據(jù)平臺的演進與大數(shù)據(jù)分析實踐","authorsList":["孫健波"],"itemPath":"/articles/qiniu-big-data-platform-evolution-and-analysis","contentType":"articles","date":1503008400000},{"score":50010,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/kuaishou-live-experience-optimization/zh/smallimage/luowei100.jpg","url":"http://www.infoq.com/cn/presentations/kuaishou-live-experience-optimization","title":"快手在大數(shù)據(jù)驅(qū)動下的直播體驗優(yōu)化","authorsList":["羅喆"],"itemPath":"/presentations/kuaishou-live-experience-optimization","contentType":"presentations","date":1501455000000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/data-virtualization--ai-and-machine-learning/zh/smallimage/agile-logo.jpg","url":"http://www.infoq.com/cn/articles/data-virtualization--ai-and-machine-learning","title":"數(shù)據(jù)虛擬化:為AI與機器學習實現(xiàn)數(shù)據(jù)解鎖","authorsList":["Robert Alexander"],"itemPath":"/articles/data-virtualization--ai-and-machine-learning","contentType":"articles","date":1504758060000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/cortana-azure-machine-learning/zh/smallimage/agile.jpg","url":"http://www.infoq.com/cn/articles/cortana-azure-machine-learning","title":"Cortana智能與機器學習博客 將人工智能引入商務智能——Azure Machine Learning中的文本分析","authorsList":["Mary Wahl"],"itemPath":"/articles/cortana-azure-machine-learning","contentType":"articles","date":1504736160000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/summary-of-benchmark-algorithms-for-fast-machine-learning/zh/smallimage/agile-logo (1).jpg","url":"http://www.infoq.com/cn/articles/summary-of-benchmark-algorithms-for-fast-machine-learning","title":"總結(jié)自快速機器學習算法基準測試的重要經(jīng)驗","authorsList":["Miguel Fierro"],"itemPath":"/articles/summary-of-benchmark-algorithms-for-fast-machine-learning","contentType":"articles","date":1504733400000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/program-techniques-computational-models-xgboost-mxnet/zh/smallimage/logo 112 (3).jpg","url":"http://www.infoq.com/cn/articles/program-techniques-computational-models-xgboost-mxnet","title":"大規(guī)模機器學習的編程技術(shù)、計算模型以及Xgboost和MXNet案例","authorsList":["陳華清"],"itemPath":"/articles/program-techniques-computational-models-xgboost-mxnet","contentType":"articles","date":1503613080000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/miniflow-build-machine-learning-infrastructure-platform/zh/smallimage/agile-logo.jpg","url":"http://www.infoq.com/cn/articles/miniflow-build-machine-learning-infrastructure-platform","title":"從算法實現(xiàn)到MiniFlow實現(xiàn),打造機器學習的基礎架構(gòu)平臺","authorsList":["陳迪豪"],"itemPath":"/articles/miniflow-build-machine-learning-infrastructure-platform","contentType":"articles","date":1501540920000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/agile-development-of-artificial-intelligence-applications/zh/smallimage/java-logo2.jpg","url":"http://www.infoq.com/cn/articles/agile-development-of-artificial-intelligence-applications","title":"機器學習的最小可用產(chǎn)品:人工智能應用的敏捷開發(fā)","authorsList":["田楓"],"itemPath":"/articles/agile-development-of-artificial-intelligence-applications","contentType":"articles","date":1501193820000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/enter-tencent-audio-and-video-quality-system/zh/smallimage/luobida100.jpg","url":"http://www.infoq.com/cn/presentations/enter-tencent-audio-and-video-quality-system","title":"直面音視頻質(zhì)量評估之痛——走進騰訊音視頻質(zhì)量體系","authorsList":["羅必達"],"itemPath":"/presentations/enter-tencent-audio-and-video-quality-system","contentType":"presentations","date":1500850500000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/machine-learning-with-javascript-part02/zh/smallimage/logo (23).jpg","url":"http://www.infoq.com/cn/articles/machine-learning-with-javascript-part02","title":"機器學習與JavaScript(二)","authorsList":["Abhishek Soni"],"itemPath":"/articles/machine-learning-with-javascript-part02","contentType":"articles","date":1499379540000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/why-tencent-embrace-open-source/zh/smallimage/agile-logo (1).jpg","url":"http://www.infoq.com/cn/articles/why-tencent-embrace-open-source","title":"一向封閉的騰訊,為什么也開始擁抱開源了?","authorsList":["郭蕾"],"itemPath":"/articles/why-tencent-embrace-open-source","contentType":"articles","date":1499293140000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/machine-learning-with-javascript-part01/zh/smallimage/logo (23).jpg","url":"http://www.infoq.com/cn/articles/machine-learning-with-javascript-part01","title":"機器學習與JavaScript(一)","authorsList":["Abhishek Soni"],"itemPath":"/articles/machine-learning-with-javascript-part01","contentType":"articles","date":1499120280000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/ios-11-machine-learning-for-everyone/zh/smallimage/logo-devops.jpg","url":"http://www.infoq.com/cn/articles/ios-11-machine-learning-for-everyone","title":"iOS 11:人人可體驗的機器學習","authorsList":["Matthijs Hollemans"],"itemPath":"/articles/ios-11-machine-learning-for-everyone","contentType":"articles","date":1499033460000},{"score":50001,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/interviews/interview-with-shaoyingxia-talk-machine-learning-practice/zh/smallimage/shaoyingxia100.jpg","url":"http://www.infoq.com/cn/interviews/interview-with-shaoyingxia-talk-machine-learning-practice","title":"專訪明略數(shù)據(jù)邵鎣俠:傳統(tǒng)公安領(lǐng)域的機器學習實踐","authorsList":["邵鎣俠"],"itemPath":"/interviews/interview-with-shaoyingxia-talk-machine-learning-practice","contentType":"interviews","date":1498515480000},{"score":19,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/AI-front-201711/zh/smallimage/100-1512039046816.jpg","url":"http://www.infoq.com/cn/minibooks/AI-front-201711","title":"AI前線(2017年11月)","authorsList":["InfoQ中文站"],"itemPath":"/minibooks/AI-front-201711","contentType":"minibooks","date":1512038700000},{"score":18,"topicsIds":null,"imageStoragePath":null,"url":"http://www.infoq.com/cn/news/2017/11/why-amazon-sagemaker-important","title":"為什么你應該關(guān)注Amazon SageMaker","authorsList":["楊賽"],"itemPath":"/news/2017/11/why-amazon-sagemaker-important","contentType":"news","date":1512023400000},{"score":18,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/interviews/interview-with-gurinder-talk-paypal-change-industry-with-data/zh/smallimage/gre100-1511260121674.jpg","url":"http://www.infoq.com/cn/interviews/interview-with-gurinder-talk-paypal-change-industry-with-data","title":"PayPal首席架構(gòu)師Gurinder:我們正在用數(shù)據(jù)改變行業(yè)","authorsList":["Gurinder"],"itemPath":"/interviews/interview-with-gurinder-talk-paypal-change-industry-with-data","contentType":"interviews","date":1511389260000},{"score":18,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/tensorflow-programing/zh/smallimage/100-1510627875939.jpg","url":"http://www.infoq.com/cn/minibooks/tensorflow-programing","title":"深度學習利器:TensorFlow程序設計","authorsList":["武維"],"itemPath":"/minibooks/tensorflow-programing","contentType":"minibooks","date":1510704000000},{"score":17,"topicsIds":null,"imageStoragePath":null,"url":"http://www.infoq.com/cn/news/2017/12/tensorflow-lite","title":"TensorFlow Lite支持設備內(nèi)置會話建模","authorsList":["Srini Penchikala"],"itemPath":"/news/2017/12/tensorflow-lite","contentType":"news","date":1512604800000},{"score":15,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/fpga-computational-performance/zh/smallimage/logo-small-1510653556493.jpg","url":"http://www.infoq.com/cn/articles/fpga-computational-performance","title":"FPGA掌控計算性能","authorsList":["Rob Taylor"],"itemPath":"/articles/fpga-computational-performance","contentType":"articles","date":1512341400000},{"score":15,"topicsIds":null,"imageStoragePath":null,"url":"http://www.infoq.com/cn/news/2017/11/knowledge-graph-articles","title":"你不得不看的六篇知識圖譜落地好文","authorsList":["杜小芳","陳思"],"itemPath":"/news/2017/11/knowledge-graph-articles","contentType":"news","date":1511221200000},{"score":15,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/4-Paradigm-Technology/zh/smallimage/100-1508808795050.jpg","url":"http://www.infoq.com/cn/minibooks/4-Paradigm-Technology","title":"架構(gòu)師特刊:范式大學","authorsList":["InfoQ中文站"],"itemPath":"/minibooks/4-Paradigm-Technology","contentType":"minibooks","date":1508808480000},{"score":14,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/articles/integrate-data-analysis-platform/zh/smallimage/kafak-1511695415195.jpg","url":"http://www.infoq.com/cn/articles/integrate-data-analysis-platform","title":"如何整合復雜技術(shù)打造數(shù)據(jù)分析平臺?","authorsList":["萬曉川"],"itemPath":"/articles/integrate-data-analysis-platform","contentType":"articles","date":1511910420000},{"score":14,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/TensorFlow-indepth/zh/smallimage/100-1506507611643.jpg","url":"http://www.infoq.com/cn/minibooks/TensorFlow-indepth","title":"架構(gòu)師特刊:深入淺出TensorFlow","authorsList":["鄭澤宇"],"itemPath":"/minibooks/TensorFlow-indepth","contentType":"minibooks","date":1508370720000},{"score":14,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/minibooks/toptech10/zh/smallimage/100-1508127572572.jpg","url":"http://www.infoq.com/cn/minibooks/toptech10","title":"中國頂尖技術(shù)團隊訪談錄·第十季","authorsList":["InfoQ中文站"],"itemPath":"/minibooks/toptech10","contentType":"minibooks","date":1508195700000},{"score":13,"topicsIds":null,"imageStoragePath":"https://res.infoq.com/presentations/unit-language-understanding-and-interaction-technology/zh/smallimage/sunke100-1509711991338.jpg","url":"http://www.infoq.com/cn/presentations/unit-language-understanding-and-interaction-technology","title":"UNIT:語言理解與交互技術(shù)","authorsList":["孫珂"],"itemPath":"/presentations/unit-language-understanding-and-interaction-technology","contentType":"presentations","date":1510182120000}]";var whitepaperVcrsJson = null;var topicSponsorshipJson = "{"iconLink":"/infoq/url.action?i=17062&t=f","iconHref":"https://res.infoq.com/sponsorship/featuredcategory/6821/logo-1512699527324.jpg","id":1580}";var vcrOptionalListJson = null;var contentDatetimeFormat='yyyy年M月d日';var contentUriMapping="news";JSi18n.relatedRightbar_relatedContent='相關(guān)內(nèi)容';JSi18n.relatedRightbar_sponsoredContent='贊助商內(nèi)容';JSi18n.relatedRightbar_sponsoredBy='贊助商';var topicIds = "2088,2178,171,3169";var communityIds = "2497,2498";var company = ""; var intervalRightbar = setInterval(function() { if (window.vcrsLoaded) { clearInterval(intervalRightbar); if(company != null && company != "") { whitepaperVcrsJson = VCR.filterByCompany(company, window.vcrList); } else { whitepaperVcrsJson = VCR.getByTopicsAndCommunities(window.vcrList, topicIds, communityIds, 5, false, null); } vcrOptionalListJson = VCR.getByTopicsAndCommunities(window.vcrList, topicIds, communityIds, 10, true, null); relatedRightbar.rightbarDisplay(recomJson, whitepaperVcrsJson, topicSponsorshipJson); // track the impression // f_vcrrightbar_sponsorship is available at document ready Tracker.doTrackVcrRightbarImpressions("f_vcrrightbar_sponsorship_top_2"); Tracker.doTrackVcrRightbarBoxesImpressions("f_sponsorbox_top_2"); // only do the tracking here so that all GA vars are initialized if(relatedRightbar.whitepaperWidgetDisplayed){ _gaq.push(['_setCustomVar', 1, 'Whitepaper widget Related Rightbar', "Display", 3]); } optionalVcrBox.parseVendorContentOptionalList(vcrOptionalListJson); // get the version to display optionalVcrBox.abTestVersion = ABTesting.getABTestVersion(); // do the display after page is ready, GA banners all load after page is ready, all GA tracking js vars are available at that time also. No need to do this earlier optionalVcrBox.optionalVcrBoxDisplayAdBlock(); // tracking is done only if not done already! (when the gam event fires before document ready and we do not have the _gaq var available) optionalVcrBox.doTracking("top"); optionalVcrBox.doTracking("bottom"); window.finishedRightbarVcr = true; } }, 200);

關(guān)鍵字:InfoQ機器學習

本文摘自:INFOQ

電子周刊
回到頂部

關(guān)于我們聯(lián)系我們版權(quán)聲明隱私條款廣告服務友情鏈接投稿中心招賢納士

企業(yè)網(wǎng)版權(quán)所有 ©2010-2024 京ICP備09108050號-6 京公網(wǎng)安備 11010502049343號

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 马鞍山市| 大英县| 龙泉市| 德兴市| 涪陵区| 黄浦区| 青阳县| 英德市| 元阳县| 石阡县| 新建县| 隆昌县| 庄浪县| 肥城市| 宣城市| 郯城县| 团风县| 南宁市| 崇明县| 日照市| 商都县| 保亭| 宁乡县| 辽宁省| 扶绥县| 濮阳市| 城步| 竹溪县| 金寨县| 陇川县| 武平县| 达日县| 金山区| 百色市| 新竹市| 郎溪县| 抚顺市| 游戏| 吉木乃县| 米林县| 峡江县|