精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當(dāng)前位置:大數(shù)據(jù)業(yè)界動(dòng)態(tài) → 正文

Spark和Hadoop分析遇障礙?可以試試容器啊

責(zé)任編輯:editor007 作者:Jack Vaughan |來(lái)源:企業(yè)網(wǎng)D1Net  2017-03-28 14:35:58 本文摘自:TechTarget中國(guó)

將定制的Spark和Hadoop試點(diǎn)項(xiàng)目轉(zhuǎn)移到生產(chǎn)中是一項(xiàng)艱巨的任務(wù),但容器技術(shù)緩解了這種艱難的過(guò)渡。

當(dāng)團(tuán)隊(duì)試圖將小型試點(diǎn)項(xiàng)目轉(zhuǎn)變?yōu)槊嫦驍?shù)據(jù)科學(xué)團(tuán)隊(duì)和業(yè)務(wù)分析人員的大型運(yùn)營(yíng)應(yīng)用程序時(shí),Spark和Hadoop分析工作往往會(huì)遇到困難。對(duì)于許多人來(lái)說(shuō),這是他們?cè)诖髷?shù)據(jù)分析之路上遇到的最大障礙。

配置的復(fù)雜性有時(shí)候也是絆腳石。由一個(gè)單獨(dú)的數(shù)據(jù)科學(xué)家構(gòu)建的自定義配置的原型可能需要很長(zhǎng)的時(shí)間來(lái)重新創(chuàng)建,一旦失敗,是由一個(gè)更廣泛的用戶池共享。為了解決這些問(wèn)題,一些人利用DevOps型容器和微服務(wù)技術(shù)將Spark和Hadoop組件銜接在一起。

“我們的數(shù)據(jù)科學(xué)團(tuán)隊(duì)和業(yè)務(wù)利益相關(guān)者不希望等待過(guò)長(zhǎng)的時(shí)間,等我們建立一個(gè)新的Spark集群或其他大型數(shù)據(jù)環(huán)境,并提供所需的所有工具、版本、配置和數(shù)據(jù),” 為醫(yī)療機(jī)構(gòu)提供分析和咨詢服務(wù)的公司董事Ramesh Thyagarajan說(shuō)道。他將Docker容器視為在大數(shù)據(jù)科學(xué)家和企業(yè)用戶上實(shí)現(xiàn)敏捷性的關(guān)鍵技術(shù)。

為了將這種DevOps風(fēng)格部署到其大數(shù)據(jù)應(yīng)用程序,咨詢委員會(huì)正在使用BlueData Software的EPIC軟件平臺(tái)來(lái)運(yùn)行Spark SQL和Spark分析引擎以及Apache Zeppelin開發(fā)人員筆記本。Thyagarajan表示:“對(duì)我們而言,這是關(guān)于敏捷性和更快速的業(yè)務(wù)創(chuàng)新的。BlueData平臺(tái)的強(qiáng)大功能是將大數(shù)據(jù)部署作為基于容器的架構(gòu)。”

據(jù)Thyagarajan介紹,該平臺(tái)為數(shù)據(jù)科學(xué)家和業(yè)務(wù)分析師提供了新的Spark集群的按需分配,這些分析人員基本上避免了此類部署所需配置的復(fù)雜性。

他表示,他的團(tuán)隊(duì)建立了自己的框架,將數(shù)據(jù)帶入Hadoop分布式文件系統(tǒng)(HDFS)。這種集中處理是很重要的,他說(shuō),“我們沒(méi)有辦法支持400多名用戶,每個(gè)用戶都創(chuàng)建自己的集群。”

是在腳本中運(yùn)行嗎?

在容器中談?wù)摯髷?shù)據(jù)為時(shí)尚早。BlueData的聯(lián)合創(chuàng)始人兼首席架構(gòu)師Tom Phelan表示,到目前為止,Spark集群主要是在裸機(jī)服務(wù)器中實(shí)施。

Tom在最近在波士頓舉行的Spark Summit East 2017年的演講中表示,裸機(jī)意味著難以改變的架構(gòu)和靜態(tài)實(shí)施。

容器的實(shí)現(xiàn)可以使用腳本由手動(dòng)完成,但是由于大數(shù)據(jù)管道組件較多,因此容器變得更具挑戰(zhàn)性。他說(shuō),Spark常常是比較復(fù)雜的、協(xié)調(diào)工作負(fù)載的一部分,這些工作量并不一定容易適應(yīng)容器的方法。

他告訴會(huì)議與會(huì)者,“必須要跨過(guò)容器管理者這一關(guān)。 這也是BlueData軟件需要解決的問(wèn)題之一。”

彈性縮放的路徑

Phelan表示,BlueData平臺(tái)最近的更新解決了使用Spark的數(shù)據(jù)科學(xué)家(如咨詢委員會(huì))的實(shí)施需求。

BlueData最新版本在本月初推出,支持常用的Spark工具,如JupyterHub,RStudio Server和Zeppelin編程筆記本,作為預(yù)配置的Docker映像。目的是為數(shù)據(jù)科學(xué)帶來(lái)更多DevOps風(fēng)格的敏捷性。

使用Docker容器和其他微服務(wù)方法是實(shí)現(xiàn)應(yīng)用程序部署自動(dòng)化的驅(qū)動(dòng)力。這些方法通常是彈性縮放的一個(gè)途徑,它允許管理員根據(jù)工作負(fù)載來(lái)建立和分解計(jì)算資源。

這在云計(jì)算以及內(nèi)部部署實(shí)施中日益普及,如果Spark和Hadoop的使用范圍在企業(yè)中逐漸擴(kuò)大,擁抱容器的加入未嘗不是一件好事。

關(guān)鍵字:SparkHadoopDocker

本文摘自:TechTarget中國(guó)

x Spark和Hadoop分析遇障礙?可以試試容器啊 掃一掃
分享本文到朋友圈
當(dāng)前位置:大數(shù)據(jù)業(yè)界動(dòng)態(tài) → 正文

Spark和Hadoop分析遇障礙?可以試試容器啊

責(zé)任編輯:editor007 作者:Jack Vaughan |來(lái)源:企業(yè)網(wǎng)D1Net  2017-03-28 14:35:58 本文摘自:TechTarget中國(guó)

將定制的Spark和Hadoop試點(diǎn)項(xiàng)目轉(zhuǎn)移到生產(chǎn)中是一項(xiàng)艱巨的任務(wù),但容器技術(shù)緩解了這種艱難的過(guò)渡。

當(dāng)團(tuán)隊(duì)試圖將小型試點(diǎn)項(xiàng)目轉(zhuǎn)變?yōu)槊嫦驍?shù)據(jù)科學(xué)團(tuán)隊(duì)和業(yè)務(wù)分析人員的大型運(yùn)營(yíng)應(yīng)用程序時(shí),Spark和Hadoop分析工作往往會(huì)遇到困難。對(duì)于許多人來(lái)說(shuō),這是他們?cè)诖髷?shù)據(jù)分析之路上遇到的最大障礙。

配置的復(fù)雜性有時(shí)候也是絆腳石。由一個(gè)單獨(dú)的數(shù)據(jù)科學(xué)家構(gòu)建的自定義配置的原型可能需要很長(zhǎng)的時(shí)間來(lái)重新創(chuàng)建,一旦失敗,是由一個(gè)更廣泛的用戶池共享。為了解決這些問(wèn)題,一些人利用DevOps型容器和微服務(wù)技術(shù)將Spark和Hadoop組件銜接在一起。

“我們的數(shù)據(jù)科學(xué)團(tuán)隊(duì)和業(yè)務(wù)利益相關(guān)者不希望等待過(guò)長(zhǎng)的時(shí)間,等我們建立一個(gè)新的Spark集群或其他大型數(shù)據(jù)環(huán)境,并提供所需的所有工具、版本、配置和數(shù)據(jù),” 為醫(yī)療機(jī)構(gòu)提供分析和咨詢服務(wù)的公司董事Ramesh Thyagarajan說(shuō)道。他將Docker容器視為在大數(shù)據(jù)科學(xué)家和企業(yè)用戶上實(shí)現(xiàn)敏捷性的關(guān)鍵技術(shù)。

為了將這種DevOps風(fēng)格部署到其大數(shù)據(jù)應(yīng)用程序,咨詢委員會(huì)正在使用BlueData Software的EPIC軟件平臺(tái)來(lái)運(yùn)行Spark SQL和Spark分析引擎以及Apache Zeppelin開發(fā)人員筆記本。Thyagarajan表示:“對(duì)我們而言,這是關(guān)于敏捷性和更快速的業(yè)務(wù)創(chuàng)新的。BlueData平臺(tái)的強(qiáng)大功能是將大數(shù)據(jù)部署作為基于容器的架構(gòu)。”

據(jù)Thyagarajan介紹,該平臺(tái)為數(shù)據(jù)科學(xué)家和業(yè)務(wù)分析師提供了新的Spark集群的按需分配,這些分析人員基本上避免了此類部署所需配置的復(fù)雜性。

他表示,他的團(tuán)隊(duì)建立了自己的框架,將數(shù)據(jù)帶入Hadoop分布式文件系統(tǒng)(HDFS)。這種集中處理是很重要的,他說(shuō),“我們沒(méi)有辦法支持400多名用戶,每個(gè)用戶都創(chuàng)建自己的集群。”

是在腳本中運(yùn)行嗎?

在容器中談?wù)摯髷?shù)據(jù)為時(shí)尚早。BlueData的聯(lián)合創(chuàng)始人兼首席架構(gòu)師Tom Phelan表示,到目前為止,Spark集群主要是在裸機(jī)服務(wù)器中實(shí)施。

Tom在最近在波士頓舉行的Spark Summit East 2017年的演講中表示,裸機(jī)意味著難以改變的架構(gòu)和靜態(tài)實(shí)施。

容器的實(shí)現(xiàn)可以使用腳本由手動(dòng)完成,但是由于大數(shù)據(jù)管道組件較多,因此容器變得更具挑戰(zhàn)性。他說(shuō),Spark常常是比較復(fù)雜的、協(xié)調(diào)工作負(fù)載的一部分,這些工作量并不一定容易適應(yīng)容器的方法。

他告訴會(huì)議與會(huì)者,“必須要跨過(guò)容器管理者這一關(guān)。 這也是BlueData軟件需要解決的問(wèn)題之一。”

彈性縮放的路徑

Phelan表示,BlueData平臺(tái)最近的更新解決了使用Spark的數(shù)據(jù)科學(xué)家(如咨詢委員會(huì))的實(shí)施需求。

BlueData最新版本在本月初推出,支持常用的Spark工具,如JupyterHub,RStudio Server和Zeppelin編程筆記本,作為預(yù)配置的Docker映像。目的是為數(shù)據(jù)科學(xué)帶來(lái)更多DevOps風(fēng)格的敏捷性。

使用Docker容器和其他微服務(wù)方法是實(shí)現(xiàn)應(yīng)用程序部署自動(dòng)化的驅(qū)動(dòng)力。這些方法通常是彈性縮放的一個(gè)途徑,它允許管理員根據(jù)工作負(fù)載來(lái)建立和分解計(jì)算資源。

這在云計(jì)算以及內(nèi)部部署實(shí)施中日益普及,如果Spark和Hadoop的使用范圍在企業(yè)中逐漸擴(kuò)大,擁抱容器的加入未嘗不是一件好事。

關(guān)鍵字:SparkHadoopDocker

本文摘自:TechTarget中國(guó)

電子周刊
回到頂部

關(guān)于我們聯(lián)系我們版權(quán)聲明隱私條款廣告服務(wù)友情鏈接投稿中心招賢納士

企業(yè)網(wǎng)版權(quán)所有 ©2010-2024 京ICP備09108050號(hào)-6 京公網(wǎng)安備 11010502049343號(hào)

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 灵寿县| 晋中市| 阳山县| 越西县| 响水县| 永昌县| 绍兴县| 武乡县| 新营市| 梅州市| 延吉市| 香河县| 汶川县| 西盟| 宜兴市| 甘谷县| 广平县| 正蓝旗| 阜南县| 平邑县| 莱西市| 咸宁市| 黄梅县| 宁德市| 溧水县| 绥中县| 宜兰县| 江口县| 淳安县| 高尔夫| 恩施市| 沁源县| 三门峡市| 高青县| 雅安市| 天津市| 会宁县| 遵义县| 泸州市| 长乐市| 古交市|