什么是工業大數據?
工業大數據,很難從內涵角度來作出一個定義,因為它涉及到很多各種各樣的數據。但從外延角度來看,比較容易。
大體上是3+3,第一個“3”是指3個層面——企業,企業上面的供應鏈、產業鏈和生態鏈,以及在這上面的行業管理和宏觀經濟。第二個“3”是指每個企業都有的3個過程——生產,使用,以及發展中的經營效益,所以,“3+3”基本上把工業大數據的脈絡圈起來了。
從企業的角度看,工業大數據是在一個企業的設計、創新、生產、經營和管理決策過程產生、使用和轉型升級過程需要的信息之和。所以最小的圈是企業,一個企業從開始到生產線到設計、到工藝過程、到人,一直到管理、決策、市場、服務,像這樣的環節都在使用。
從供應鏈、產業鏈和生態鏈的角度來看,工業大數據是供應鏈、產業鏈和生態鏈產生、使用和需求的各類信息之和。這三個鏈之間很難一刀斷開,因此,我也是從一個概念來看。所以,制造業也好、工業企業也好,整個過程是一個鏈環周。這個鏈不僅是一個企業,更重要的是政府機構、研究機構,需要把控和研究如何追求制造業前兩環的優化。所以我們看到了超越一個企業的生存、使用和發展需求的新工業數據。
從行業管理和宏觀調控的角度來看,工業大數據是工業行業管理和宏觀調控產生、使用和需求的各類信息之和。每一個行業的管理都需要工業大數據,在工業行業又生存了很多企業,做好工業數據管理需要這樣一個鏈條,所以“3+3”構成了工業大數據的外延,每一個環節,使用的和需求的中間是交集,這樣才對工業大數據的發展提供了基礎。
小結
首先,3+3加起來的組合就是工業大數據;
第二,產生、使用和進一步發展的需求的工業大數據是不同的,是交集;
第三,進一步發展需求的大數據最大;
最后一句話最重要,工業大數據,工業是主體。
為什么要發展工業大數據?
同樣是三個層面,從三個由小到大的層面,加上一個需求,來看一下工業大數據的作用和意義。
首先,從最小的層面——企業來看,工業大數據為企業全過程設計、創新、生產、經營、管理、決策服務,為企業的發展戰略和目標的實現服務。
第二個層面,工業大數據服務于供應鏈的優化、產業鏈的完善、生態鏈的形成和優化。從供應鏈、產業鏈、生態鏈來看,不管是CSM的生產圈,還是一個特定產品制造過程的供應鏈,或是一個完整生產過程的分析,工業大數據都是為了它的形成和優化。
第三個層面,工業大數據要滿足行業和宏觀決策調控的實際需求,提高行業和宏觀經濟管理決策質量、能力。政府的行業管理對于供應鏈、產業鏈、生態鏈、商業鏈、價值鏈有著非常重要的作用,但是政府的宏觀調控超越了這樣的鏈環本身,我們要對經濟發展面臨的重大問題作出回應,甚至回答制造業如何來應對這樣的問題。所以從這個行業來看重要的是行業發展戰略,而到宏觀調控的時候,不但要從行業的發展戰略,還要從整個經濟發展去看這些問題怎么解決?這就需要信息。
第四,從工業轉型升級的需求看,工業大數據是為了一個個企業、行業、裝備、工藝、生產線、供應鏈的轉型升級服務。先進制造業、工業4.0、智能制造,以兩化融合和智能制造為重點的中國制造2025,都是工業轉型升級模式的未來方向。原來我們的3.0工業,是以裝備和生產線為核心的自動化,而4.0的智能化是把這兩個過程自動化和數據自動化結合在一起。
小結
工業大數據的研究和實踐要服務于加快制造業轉型升級、提升工業競爭力;
這個目標要落實到企業創新、設計、生產、經營、管理、決策的每一個具體環節;
這個目標要落實到供應鏈全局優化、產業鏈和生態鏈的形成和優化的每一個具體環節;
這個目標要落實到工業行業管理和宏觀經濟調控決策的每一個實際需求。
工業大數據怎么推動制造業轉型升級?
在回答怎么辦之前,首先要知道存在著哪些主要問題:
1、在數據生成環節,主要存在跑冒滴漏和非標準的問題;
2、在數據利用環節,主要存在數據不足、質量不高、各個環節協同存在制度、核算、標準等大量障礙;
3、在發展需求環節,主要存在缺乏預見性、缺乏有效的模型和工具、缺乏制度和標準規范等問題。
要想建設好、應用好大數據,首先要解決這三個問題。
首先是建設,什么是建設?我記得三年前說過,把大數據作探礦、采礦、煉礦、用礦,實際上探礦和采礦就是建設好信息,可以從三個緯度四個方面來建設好信息。三個緯度首先是發現,然后才可以按照應用需求結合起來。第二要有制度,要有標準,要實現系統之間的互操作。同時我們還要發現、收集、組織,來提升系統性、完整性、及時性、準確性。這是建設好、運用好。
利用好有三個方面或者三個層次和若干個關鍵環節。由于時間關系就不再展開討論了。
最后,要特別注重取得實效、最佳實踐和理論研究。
1、要特別注重實效。因為今天的大數據,每一個環節的形成都有它的實效,這件事情從開始到做完以后,效果究竟是什么?有很多企業家,當你用大數據對你企業各個環節進行改善提升的時候,你首先第一條要把提高效率放在首位,這是關鍵,而且對于制造業來說,要永遠把利潤率放在最重要的位置。當然,工業大數據不能直接用錢來算,有的環節是企業老板在管理上、服務上提效,但是這個效果必須是可測量的,不管是定性的還是定量的。
2、要特別注重最佳實踐。i5數控機床,從開始研發到今天位列智能數控機床試點領先的行列,花了十年的時間。為什么前面幾年沒有成功?就是因為數據缺失。缺什么數據?高端數控機床為什么長期被國外控制?數控機床的技術為什么那么長時間沒有克服?因為不管是材料的發展,還是裝備的發展,都沒有數據,沒有實踐過程中的數據,它是發展不起來的。接下來是模型怎么建,也需要數據來支撐,但是原來由于高端數控機床都由國外來控制,我們沒有數據。另外,它在這個過程里面還倡導商業模式,這個機床是按服務鑰匙收費。所以它又變成了今天最新最熱門的制造行業分享。這顯然是一個最佳實踐,這里面工業數據是極其重要的。
3、要注重理論的研究,注重方法、制度創新的研究。在這個過程中,需要對制造業發展的趨勢、特征,工業大數據的內涵外延,工業大數據建設和利用的系統方法,工業大數據質量保證、協同發展、制度創新等等一系列問題進行研究。