精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

大數據的力量來自“大成智慧”信息時代大數據的再認識

責任編輯:jackye

2016-02-22 09:02:24

摘自:199IT網

大數據已成為媒體與大眾關注的新技術,大數據的應用也預示著信息時代將進入一個新階段,但人們對大數據的認識有一個不斷加深的過程。

1e20005a3f3782dd6b5

大數據已成為媒體與大眾關注的新技術,大數據的應用也預示著信息時代將進入一個新階段,但人們對大數據的認識有一個不斷加深的過程。首先從“信息時代新階段”、數據文化和認識論的高度闡述了對大數據的理解;接著通過對驅動效益和大成智慧的解釋,探討了如何正確認識大數據的價值和效益,并從復雜性的角度分析了大數據研究和應用面臨的挑戰;最后對發展大數據應避免的誤區提出幾點看法。

1 大數據興起預示“信息時代”進入新階段

1.1 看待大數據要有歷史性的眼光

信息時代是相對于農業和工業時代而言的一段相當長的時間。不同時代的生產要素和社會發展驅動力有明顯差別。信息時代的標志性技術發明是數字計算機、集成電路、光纖通信和互聯網(萬維網)。盡管媒體上大量出現“大數據時代”的說法,但大數據、云計算等新技術目前還沒有出現與上述劃時代的技術發明可媲美的技術突破,難以構成一個超越信息時代的新時代。信息時代可以分成若干階段,大數據等新技術的應用標志著信息社會將進入一個新階段。

考察分析100年以上的歷史長河可以發現,信息時代與工業時代的發展規律有許多相似之處。電氣化時代與信息時代生產率的提高過程驚人地相似。都是經過20~30年擴散儲備之后才有明顯提高,分界線分別是1915年和1995年[1]。筆者猜想,信息技術經過幾十年的擴散儲備后,21世紀的前30年可能是信息技術提高生產率的黃金時期。

1.2 從“信息時代新階段”的高度認識“大數據”

中國已開始進入信息時代,但許多人的思想還停留在工業時代。經濟和科技工作中出現的許多問題,其根源是對時代的認識不到位。18-19世紀中國落后挨打,根源是滿清政府沒有認識到時代變了,我們不能重犯歷史性的錯誤。

中央提出中國進入經濟“新常態”以后,媒體上有很多討論,但多數是為經濟增速降低做解釋,很少有從時代改變的角度論述“新常態”的文章。筆者認為,經濟新常態意味著中國進入了以信息化帶動新型工業化、城鎮化和農業現代化的新階段,是經濟和社會管理的躍遷,不是權宜之計,更不是倒退。

大數據、移動互聯網、社交網絡、云計算、物聯網等新一代信息技術構成的IT架構“第三平臺”是信息社會進入新階段的標志,對整個經濟的轉型有引領和帶動作用。媒體上經常出現的互聯網+、創客、“第二次機器革命”、“工業4.0”等都與大數據和云計算有關。大數據和云計算是新常態下提高生產率的新杠桿,所謂創新驅動發展就是主要依靠信息技術促進生產率的提高。

1.3 大數據可能是中國信息產業從跟蹤走向引領的突破口

中國的大數據企業已經有相當好的基礎。全球十大互聯網服務企業中國占有4席(阿里巴巴、騰訊、百度和京東),其他6個Top10 互聯網服務企業全部是美國企業,歐洲和日本沒有互聯網企業進入Top10。這說明中國企業在基于大數據的互聯網服務業務上已處于世界前列。在發展大數據技術上,我國有可能改變過去30年技術受制于人的局面,在大數據應用上中國有可能在全世界起到引領作用。

但是,企業的規模走在世界前列并不表示我國在大數據技術上領先。實際上,國際上目前流行的大數據主流技術沒有一項是我國開創的。開源社區和眾包是發展大數據技術和產業的重要途徑,但我們對開源社區的貢獻很小,在全球近萬名社區核心志愿者中,我國可能不到200名。我們要吸取過去基礎研究為企業提供核心技術不夠的教訓,加強大數據基礎研究和前瞻技術研究,努力攻克大數據核心和關鍵技術。

2 理解大數據需要上升到文化和認識論的高度

2.1 數據文化是一種先進文化

數據文化的本質是尊重客觀世界的實事求是精神,數據就是事實。重視數據就是強調用事實說話、按理性思維的科學精神。中國人的傳統習慣是定性思維而不是定量思維。目前許多城市在開展政府數據開放共享工作,但是發現多數老百姓對政府要開放的數據并不感興趣。要讓大數據走上健康的發展軌道,首先要大力弘揚數據文化。本文講的數據文化不只是大數據用于文藝、出版等文化產業,而是指全民的數據意識。全社會應認識到:信息化的核心是數據,只有政府和大眾都關注數據時,才能真正理解信息化的實質;數據是一種新的生產要素,大數據的利用可以改變資本和土地等傳統要素在經濟中的權重。

有人將“上帝與數據共舞”歸納為美國文化的特點之一,說的是美國人既有對神的誠意,又有通過數據求真的理性。美國從鍍金時代到進步主義時期完成了數據文化的思維轉變,南北戰爭之后人口普查的方法被應用到很多領域,形成了數據預測分析的思維方式。近百年來美國和西方各國的現代化與數據文化的傳播滲透有密切關系,我國要實現現代化也必須強調數據文化。

提高數據意識的關鍵是要理解大數據的戰略意義。數據是與物質、能源一樣重要的戰略資源,數據的采集和分析涉及每一個行業,是帶有全局性和戰略性的技術。從硬技術到軟技術的轉變是當今全球性的技術發展趨勢,而從數據中發現價值的技術正是最有活力的軟技術,數據技術與數據產業的落后將使我們像錯過工業革命機會一樣延誤一個時代。

2.2 理解大數據需要有正確的認識論

歷史上科學研究是從邏輯演繹開始的,歐幾里得幾何的所有定理可從幾條公理推導出來。從伽利略和牛頓開始,科學研究更加重視自然觀察和實驗觀察,在觀察基礎上通過歸納方法提煉出科學理論,“科學始于觀察”成為科學研究和認識論的主流。經驗論和唯理論這兩大流派都對科學的發展做出過重大貢獻,但也暴露出明顯的問題,甚至走入極端。理性主義走向極端就成為康德所批判的獨斷主義,經驗主義走入極端就變成懷疑論和不可知論[2]。

20世紀30年代,德國哲學家波普爾提出了被后人稱為“證偽主義”的認識論觀點,他認為科學理論不能用歸納法證實,只能被試驗發現的反例“證偽”,因而他否定科學始于觀察,提出“科學始于問題”的著名觀點[3]。證偽主義有其局限性,如果嚴格遵守證偽法則,萬有引力定律、原子論等重要理論都可能被早期的所謂反例扼殺。但“科學始于問題”的觀點對當前大數據技術的發展有指導意義。

大數據的興起引發了新的科學研究模式:“科學始于數據”。從認識論的角度看,大數據分析方法與“科學始于觀察”的經驗論較為接近,但我們要牢記歷史的教訓,避免滑入否定理論作用的經驗主義泥坑。在強調“相關性”的時候不要懷疑“因果性”的存在;在宣稱大數據的客觀性、中立性的時候,不要忘了不管數據的規模如何,大數據總會受制于自身的局限性和人的偏見。不要相信這樣的預言:“采用大數據挖掘,你不需要對數據提出任何問題,數據就會自動產生知識”。面對像大海一樣的巨量數據,從事數據挖掘的科技人員最大的困惑是,我們想撈的“針”是什么?這海里究竟有沒有“針”?也就是說,我們需要知道要解決的問題是什么。從這個意義上講,“科學始于數據”與“科學始于問題”應有機地結合起來。

對“原因”的追求是科學發展的永恒動力。但是,原因是追求不完的,人類在有限的時間內不可能找到“終極真理”。在科學的探索途中,人們往往用“這是客觀規律”解釋世界,并不立即追問為什么有這樣的客觀規律。也就是說,傳統科學并非只追尋因果性,也可以用客觀規律作為結論。大數據研究的結果多半是一些新的知識或新的模型,這些知識和模型也可以用來預測未來,可以認為是一類局部性的客觀規律。科學史上通過小數據模型發現一般性規律的例子不少,比如開普勒歸納的天體運動規律等;而大數據模型多半是發現一些特殊性的規律。物理學中的定律一般具有必然性,但大數據模型不一定具有必然性,也不一定具有可演繹性。大數據研究的對象往往是人的心理和社會,在知識階梯上位于較高層,其自然邊界是模糊的,但有更多的實踐特征。大數據研究者更重視知行合一,相信實踐論。大數據認識論有許多與傳統認識論不同的特點,我們不能因其特點不同就否定大數據方法的科學性。大數據研究挑戰了傳統認識論對因果性的偏愛,用數據規律補充了單一的因果規律,實現了唯理論和經驗論的數據化統一,一種全新的大數據認識論正在形成。

3 正確認識大數據的價值和效益

3.1 大數據的價值主要體現為它的驅動效應

人們總是期望從大數據中挖掘出意想不到的“大價值”。實際上大數據的價值主要體現在它的驅動效應,即帶動有關的科研和產業發展,提高各行各業通過數據分析解決困難問題和增值的能力。大數據對經濟的貢獻并不完全反映在大數據公司的直接收入上,應考慮對其他行業效率和質量提高的貢獻。大數據是典型的通用技術,理解通用技術要采用“蜜蜂模型”:蜜蜂的效益主要不是自己釀的蜂蜜,而是蜜蜂傳粉對農業的貢獻。

電子計算機的創始人之一馮·諾依曼曾指出:“在每一門科學中,當通過研究那些與終極目標相比頗為樸實的問題,發展出一些可以不斷加以推廣的方法時,這門學科就得到了巨大的進展。”我們不必天天期盼奇跡出現,多做一些“頗為樸實”的事情,實際的進步就在扎扎實實的努力之中。媒體喜歡宣傳一些令人驚奇的大數據成功案例,對這些案例我們應保持清醒的頭腦。據Intel中國研究院首席工程師吳甘沙在一次報告中透露,所謂“啤酒加尿布”的數據挖掘經典案例,其實是Teradata公司一位經理編出來的“故事”,歷史上并沒有發生過[4]。即使有這個案例,也不說明大數據分析本身有什么神奇,大數據中看起來毫不相關的兩件事同時或相繼出現的現象比比皆是,關鍵是人的分析推理找出為什么兩件事物同時或相繼出現,找對了理由才是新知識或新發現的規律,相關性本身并沒有多大價值。

有一個家喻戶曉的寓言可以從一個角度說明大數據的價值:一位老農民臨終前告訴他的3個兒子,他在他家的地中埋藏了一罐金子,但沒有講埋在哪里。

他的兒子們把他家所有的地都深挖了一遍,沒有挖到金子,但由于深挖了土地,從此莊稼收成特別好。數據收集、分析的能力提高了,即使沒有發現什么普適的規律或令人完全想不到的新知識,大數據的價值也已逐步體現。

3.2 大數據的力量來自“大成智慧”

每一種數據來源都有一定的局限性和片面性,只有融合、集成各方面的原始數據,才能反映事物的全貌。事物的本質和規律隱藏在各種原始數據的相互關聯之中。不同的數據可能描述同一實體,但角度不同。對同一個問題,不同的數據能提供互補信息,可對問題有更深入的理解。因此在大數據分析中,匯集盡量多種來源的數據是關鍵。

數據科學是數學(統計、代數、拓撲等)、計算機科學、基礎科學和各種應用科學融合的科學,類似錢學森先生提出的“大成智慧學”[5]。錢老指出:“必集大成,才能得智慧”。大數據能不能出智慧,關鍵在于對多種數據源的集成和融合。IEEE計算機學會最近發布了2014年的計算機技術發展趨勢預測報告,重點強調“無縫智慧(seamless intelligence)”。發展大數據的目標就是要獲得協同融合的“無縫智慧”。單靠一種數據源,即使數據規模很大,也可能出現“瞎子摸象”一樣的片面性。數據的開放共享不是錦上添花的工作,而是決定大數據成敗的必要前提。

大數據研究和應用要改變過去各部門和各學科相互分割、獨立發展的傳統思路,重點不是支持單項技術和單個方法的發展,而是強調不同部門、不同學科的協作。數據科學不是垂直的“煙囪”,而是像環境、能源科學一樣的橫向集成科學。

3.3 大數據遠景燦爛,但近期不能期望太高

交流電問世時主要用作照明,根本想象不到今天無處不在的應用。大數據技術也一樣,將來一定會產生許多現在想不到的應用。我們不必擔心大數據的未來,但近期要非常務實地工作。人們往往對近期的發展估計過高,而對長期的發展估計不足。Gartner公司預測,大數據技術要在5~10年后才會成為較普遍采用的主流技術,對發展大數據技術要有足夠的耐心。

大數據與其他信息技術一樣,在一段時間內遵循指數發展規律。指數發展的特點是,從一段歷史時期衡量(至少30年),前期發展比較慢,經過相當長時間(可能需要20年以上)的積累,會出現一個拐點,過了拐點以后,就會出現爆炸式的增長。但任何技術都不會永遠保持“指數性”增長,一般而言,高技術發展遵循Gartner公司描述的技術成熟度曲線(hype cycle),最后可能進入良性發展的穩定狀態或者走向消亡。

需要采用大數據技術來解決的問題往往都是十分復雜的問題,比如社會計算、生命科學、腦科學等,這些問題絕不是幾代人的努力就可以解決的。宇宙經過百億年的演化,才出現生物和人類,其復雜和巧妙堪稱絕倫,不要指望在我們這一代人手中就能徹底揭開其奧妙。展望數百萬年甚至更長遠的未來,大數據技術只是科學技術發展長河中的一朵浪花,對10~20年大數據研究可能取得的科學成就不能抱有不切實際的幻想。

4 從復雜性的角度看大數據研究和應用面臨的挑戰

大數據技術和人類探索復雜性的努力有密切關系。20世紀70年代,新三論(耗散結構論、協同論、突變論)的興起對幾百年來貫穿科學技術研究的還原論發起了挑戰。1984年蓋爾曼等3位諾貝爾獎得主成立以研究復雜性為主的圣菲研究所,提出超越還原論的口號,在科技界掀起了一場復雜性科學運動。雖然雷聲很大,但30年來并未取得預期的效果,其原因之一可能是當時還沒有出現解決復雜性的技術。

集成電路、計算機與通信技術的發展大大增強了人類研究和處理復雜問題的能力。大數據技術將復雜性科學的新思想發揚光大,可能使復雜性科學得以落地。復雜性科學是大數據技術的科學基礎,大數據方法可以看作復雜性科學的技術實現。大數據方法為還原論與整體論的辯證統一提供了技術實現途徑。大數據研究要從復雜性研究中吸取營養,從事數據科學研究的學者不但要了解20世紀的“新三論”,可能還要學習與超循環、混沌、分形和元胞自動機等理論有關的知識,擴大自己的視野,加深對大數據機理的理解。

大數據技術還不成熟,面對海量、異構、動態變化的數據,傳統的數據處理和分析技術難以應對,現有的數據處理系統實現大數據應用的效率較低,成本和能耗較大,而且難以擴展。這些挑戰大多來自數據本身的復雜性、計算的復雜性和信息系統的復雜性。

4.1 數據復雜性引起的挑戰

圖文檢索、主題發現、語義分析、情感分析等數據分析工作十分困難,其原因是大數據涉及復雜的類型、復雜的結構和復雜的模式,數據本身具有很高的復雜性。目前,人們對大數據背后的物理意義缺乏理解,對數據之間的關聯規律認識不足,對大數據的復雜性和計算復雜性的內在聯系也缺乏深刻理解,領域知識的缺乏制約了人們對大數據模型的發現和高效計算方法的設計。形式化或定量化地描述大數據復雜性的本質特征及度量指標,需要深入研究數據復雜性的內在機理。人腦的復雜性主要體現在千萬億級的樹突和軸突的鏈接,大數據的復雜性主要也體現在數據之間的相互關聯。理解數據之間關聯的奧秘可能是揭示微觀到宏觀“涌現”規律的突破口。大數據復雜性規律的研究有助于理解大數據復雜模式的本質特征和生成機理,從而簡化大數據的表征,獲取更好的知識抽象。為此,需要建立多模態關聯關系下的數據分布理論和模型,理清數據復雜度和計算復雜度之間的內在聯系,奠定大數據計算的理論基礎。

4.2 計算復雜性引起的挑戰

大數據計算不能像處理小樣本數據集那樣做全局數據的統計分析和迭代計算,在分析大數據時,需要重新審視和研究它的可計算性、計算復雜性和求解算法。大數據樣本量巨大,內在關聯密切而復雜,價值密度分布極不均衡,這些特征對建立大數據計算范式提出了挑戰。對于PB級的數據,即使只有線性復雜性的計算也難以實現,而且,由于數據分布的稀疏性,可能做了許多無效計算。

傳統的計算復雜度是指某個問題求解時需要的時間空間與問題規模的函數關系,所謂具有多項式復雜性的算法是指當問題的規模增大時,計算時間和空間的增長速度在可容忍的范圍內。傳統科學計算關注的重點是,針對給定規模的問題,如何“算得快”。而在大數據應用中,尤其是流式計算中,往往對數據處理和分析的時間、空間有明確限制,比如網絡服務如果回應時間超過幾秒甚至幾毫秒,就會丟失許多用戶。大數據應用本質上是在給定的時間、空間限制下,如何“算得多”。從“算得快”到“算得多”,考慮計算復雜性的思維邏輯有很大的轉變。所謂“算得多”并不是計算的數據量越大越好,需要探索從足夠多的數據,到剛剛好的數據,再到有價值的數據的按需約簡方法。

基于大數據求解困難問題的一條思路是放棄通用解,針對特殊的限制條件求具體問題的解。人類的認知問題一般都是NP難問題,但只要數據充分多,在限制條件下可以找到十分滿意的解,近幾年自動駕駛汽車取得重大進展就是很好的案例。為了降低計算量,需要研究基于自舉和采樣的局部計算和近似方法,提出不依賴于全量數據的新型算法理論,研究適應大數據的非確定性算法等理論。

4.3 系統復雜性引起的挑戰

大數據對計算機系統的運行效率和能耗提出了苛刻要求,大數據處理系統的效能評價與優化問題具有挑戰性,不但要求理清大數據的計算復雜性與系統效率、能耗間的關系,還要綜合度量系統的吞吐率、并行處理能力、作業計算精度、作業單位能耗等多種效能因素。針對大數據的價值稀疏性和訪問弱局部性的特點,需要研究大數據的分布式存儲和處理架構。

大數據應用涉及幾乎所有的領域,大數據的優勢是能在長尾應用中發現稀疏而珍貴的價值,但一種優化的計算機系統結構很難適應各種不同的需求,碎片化的應用大大增加了信息系統的復雜性,像昆蟲種類一樣多(500多萬種)的大數據和物聯網應用如何形成手機一樣的巨大市場,這就是所謂“昆蟲綱悖論”[6]。為了化解計算機系統的復雜性,需要研究異構計算系統和可塑計算技術。

大數據應用中,計算機系統的負載發生了本質性變化,計算機系統結構需要革命性的重構。信息系統需要從數據圍著處理器轉改變為處理能力圍著數據轉,關注的重點不是數據加工,而是數據的搬運;系統結構設計的出發點要從重視單任務的完成時間轉變到提高系統吞吐率和并行處理能力,并發執行的規模要提高到10億級以上。構建以數據為中心的計算系統的基本思路是從根本上消除不必要的數據流動,必要的數據搬運也應由“大象搬木頭”轉變為“螞蟻搬大米”。

5 發展大數據應避免的誤區

5.1 不要一味追求“數據規模大”

大數據主要難點不是數據量大,而是數據類型多樣、要求及時回應和原始數據真假難辨。現有數據庫軟件解決不了非結構化數據,要重視數據融合、數據格式的標準化和數據的互操作。采集的數據往往質量不高是大數據的特點之一,但盡可能提高原始數據的質量仍然值得重視。腦科學研究的最大問題就是采集的數據可信度差,基于可信度很差的數據難以分析出有價值的結果。

一味追求數據規模大不僅會造成浪費,而且效果未必很好。多個來源的小數據的集成融合可能挖掘出單一來源大數據得不到的大價值。應多在數據的融合技術上下功夫,重視數據的開放與共享。所謂數據規模大與應用領域有密切關系,有些領域幾個PB的數據未必算大,有些領域可能幾十TB已經是很大的規模。

發展大數據不能無止境地追求“更大、更多、更快”,要走低成本、低能耗、惠及大眾、公正法治的良性發展道路,要像現在治理環境污染一樣,及早關注大數據可能帶來的“污染”和侵犯隱私等各種弊端。

5.2 不要“技術驅動”,要“應用為先”

新的信息技術層出不窮,信息領域不斷冒出新概念、新名詞,估計繼“大數據”以后,“認知計算”、“可穿戴設備”、“機器人”等新技術又會進入炒作高峰。我們習慣于跟隨國外的熱潮,往往不自覺地跟著技術潮流走,最容易走上“技術驅動”的道路。實際上發展信息技術的目的是為人服務,檢驗一切技術的唯一標準是應用。我國發展大數據產業一定要堅持“應用為先”的發展戰略,堅持應用牽引的技術路線。技術有限,應用無限。各地發展云計算和大數據,一定要通過政策和各種措施調動應用部門和創新企業的積極性,通過跨界的組合創新開拓新的應用,從應用中找出路。

5.3 不能拋棄“小數據”方法

流行的“大數據”定義是:無法通過目前主流軟件工具在合理時間內采集、存儲、處理的數據集。這是用不能勝任的技術定義問題,可能導致認識的誤區。按照這種定義,人們可能只會重視目前解決不了的問題,如同走路的人想踩著自己身前的影子。其實,目前各行各業碰到的數據處理多數還是“小數據”問題。我們應重視實際碰到的問題,不管是大數據還是小數據。

統計學家們花了200多年,總結出認知數據過程中的種種陷阱,這些陷阱不會隨著數據量的增大而自動填平。大數據中有大量的小數據問題,大數據采集同樣會犯小數據采集一樣的統計偏差。Google公司的流感預測這兩年失靈,就是由于搜索推薦等人為的干預造成統計誤差。

大數據界流行一種看法:大數據不需要分析因果關系、不需要采樣、不需要精確數據。這種觀念不能絕對化,實際工作中要邏輯演繹和歸納相結合、白盒與黑盒研究相結合、大數據方法與小數據方法相結合。

5.4 要高度關注構建大數據平臺的成本

目前全國各地都在建設大數據中心,呂梁山下都建立了容量達2 PB以上的數據處理中心,許多城市公安部門要求存儲3個月以上的高清監控錄像。這些系統的成本都非常高。數據挖掘的價值是用成本換來的,不能不計成本,盲目建設大數據系統。什么數據需要保存,要保存多少時間,應當根據可能的價值和所需的成本來決定。大數據系統技術還在研究之中,美國的E級超級計算機系統要求能耗降低1 000倍,計劃到2024年才能研制出來,用現在的技術構建的巨型系統能耗極高。

我們不要攀比大數據系統的規模,而是要比實際應用效果,比完成同樣的事消耗更少的資源和能量。先抓老百姓最需要的大數據應用,因地制宜發展大數據。發展大數據與實現信息化的策略一樣:目標要遠大、起步要精準、發展要快速。

作者,李國杰,男,博士,中國工程院院士。現任中國科學院計算技術所首席科學家,曙光信息產業股份有限公司董事長,中國計算機學會名譽理事長,國家信息化專家咨詢委員會信息技術與新興產業專委會副主任,中國科學院學位委員會副主席,中國科學院大學計算機與控制學院院長,中國科學技術大學計算機科學與技術學院院長等。

以下為《對大數據的再認識》報告PPT全文:

1e80005945bacf860ac

1f700059a16515ec5d1

1f60005a3608249edb1

1f700059a1a00a34f46

1e20005a40555cfb185

1e20005a40c8dd94b49

1e80005946cdb382a6a

1f700059a2608bc27cf

1f700059a2bf79cf3b0

1e800059479af85b803

1f60005a36f2db05309

1e80005948004792877

1f60005a377d44e403c

1e800059486c6705421

1f700059a402444df53

1e80005948c16be97fb

1f60005a3809f0afc2a

1e20005a435fe58ba7e

1e20005a439c1f009e4

1f700059a4c654b77ba

1e8000594982a34e6dd

1f700059a58dfdc201e

1f60005a392ce4a3e99

1f60005a398e69db60e

1f700059a667811f782

1f700059a696c4a2f67

1e8000594a597a1fd07

1e8000594a7c5a0f41e

1f700059a75a1035578

1f700059a76a6a9b97e

1e8000594aae7a2bf86

1f700059a7b3c136c40

1f60005a3adca170b6d

1e8000594b27df3d93a

1e8000594b6c2121300

1e20005a4604f50537a

1e20005a4627030dd63

1e20005a466ee12c294

1e20005a4688ee01575

1f60005a3bea0227428

1e8000594c04d96e49f

1e20005a46ee7b6f4f8

1e8000594c51c5e92e8

1f60005a3c45414cf53

1e20005a477aa50bbd9

1e8000594d087e0549c

1f700059aa02fdf2407

1e20005a4812b6632fe

1e20005a485640810e1

1e20005a488a8c115c1

1e8000594e1855d84d5

 

鏈接已復制,快去分享吧

企業網版權所有?2010-2024 京ICP備09108050號-6京公網安備 11010502049343號

  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 上高县| 缙云县| 澳门| 澄迈县| 弥勒县| 孝义市| 麻城市| 道孚县| 镇雄县| 龙口市| 武清区| 新安县| 调兵山市| 平顺县| 汉寿县| 博罗县| 墨脱县| 石楼县| 万源市| 鹤岗市| 林甸县| 利辛县| 吴桥县| 汾阳市| 瓦房店市| 巴林右旗| 松滋市| 嵊州市| 新晃| 璧山县| 固镇县| 五台县| 正宁县| 揭东县| 郎溪县| 新昌县| 蒙城县| 徐汇区| 绍兴县| 彰武县| 衡水市|