《企業網D1Net》3月4日訊
隨著大數據時代的到來,大數據分析的運用也越來越廣泛,對于企業而言,大數據分析的應用是企業最為熱衷的數據處理方式。
隨著企業處理的數據量越來越大,數據處理工具的智能化程度越來越高,處理速度越來越快,價格也越來越實惠。大數據分析不僅僅是一種趨勢,而是許多大型電子商務公司必不可少的一項工作內容。在大數據時代的背景下,靈活運用各項數據分析手段提煉商業智能已經成為電子商務企業的一項必修課。
所謂的大數據,是需要跨視角、跨媒介、跨行業的海量數據,也可以理解為數據的收集方法。當數據的規模和豐富度達到一定程度,大家才開始提出大數據的概念。那么,電商從大數據里謀發展需要具備哪些要素呢?
功力一:駕馭大數據
數據集往往非常龐大,很難用傳統的數據庫管理工具進行處理,截至2012年,數據集由幾十兆字節至數拍字節的數據組成。這些數據包括訪問網頁、登陸、在線交易等等。目前數據集的規模在不斷增大。企業應使用相應工具對數據進行壓縮和篩選,僅展現與特定內容相關的數據。目前一些企業已實施大數據策略,一些企業正在開發或者打算開發大數據。
功力二:捕捉和存儲
這是第一步,大數據改變了業務模式,比如通過捕捉、存儲和分析用戶在社交媒體上發表的售后體驗,可以提高質量,改進服務。企業不僅應捕捉和存儲大數據,還應開發和利用大數據,因為只有開發和利用大數據,才能挖掘出大數據蘊藏的巨大價值,特別是應使用專門工具分析和開發雜亂的、非結構化的數據。
功力三:篩選
了解消費者情緒,優化供應鏈,去除虛假數據,為此,企業應對基礎設施和軟件進行投資,運用相應算法處理大數據,并聘請數據科學家完成相應工作。只有對數據進行壓縮處理,智能地展現與特定內容相關的數據,才能更好地利用大數據。
功力四:分析
電子商務企業的規模在不斷增大,企業需要對其核心業務數據進行分析,不能再憑感覺或直覺制定關鍵決策,最好對所有與客戶相關的業務數據進行分析,以留住現有客戶,吸引他們購買更多的商品,同時羸得更多新客戶。
功力五:提供定制產品和個性化服務
分析和細分市場,根據個人或消費群體的喜好或者消費行為提供富有個性化的產品,比如,營銷部門可以收集一些有價值的信息,找出購物者的興趣所在,然后有針對性地組織一些營銷活動,從而增加了企業在競爭中的優勢,
功力六:著眼情報數據挖掘
除了大數據工具的運用,情報數據也是電商公司真正應該關注的。
所謂的情報數據處理人員,從日常的工作場景來看,出去奔波收集情報的工作占了多數份額。他們會跟上下游供應鏈,以及進行跨部門溝通。例如,一個采購人員應該去生產線,去分析每家供應商的生產水平如何,優秀的工廠和二線工廠的生產周期區別,哪里的原材料采購價格最低。一般來講,這樣的一條情報能使用一到三年。
雖然數據性不強,但這些情報價值十分高。郝欣誠說得更為直截了當:“講數據挖掘不如講情報挖掘,情報挖掘才能夠為電商企業提供真正生產力級的支持,如果情報挖掘都沒做好,就想把它數字化和量化,有點操之過急。”
現在的電子商務企業,日均能達到十萬單的少之又少。在有海量數據積累的基礎上,還要有一套優秀的BI系統,而且必須是按公司需求定制,才可能實現大數據。然而,在表面繁華的背后,又有誰知道在銷售記錄屢創新高的同時,電子商務的利潤率是否也得到同步的增長呢?實際上,能夠真正實現銷量與利潤率雙增長的電商少之又少,而且在越來越少。因為,不少電商的銷售業績是通過價格戰和付出大量促銷成本來實現的。
D1Net評論:
電商最為關注的無疑就是銷售額的增減,而大數據分析的應用也無非是為了提高電商的銷售額,總之,一切是為了營收。電商從大數據里謀發展,必須要修煉以上六大功力,這六大功力缺一不可,必須全部具備,才能真正將大數據分析的應用落實到實處,實現銷售額的增加。