精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當前位置:大數據數據分析 → 正文

一名優秀的數據分析師是怎樣煉成的?

責任編輯:editor004 |來源:企業網D1Net  2016-10-20 11:02:40 本文摘自:互聯網

近些年,互聯網公司對數據分析師崗位的需求越來越多,這不是偶然。

過去十多年,中國互聯網行業靠著人口紅利和流量紅利野蠻生長;而隨著流量獲取成本不斷提高、運營效率的不斷下降,這種粗放的經營模式已經不再可行。互聯網企業迫切需要通過數據分析來實現精細化運營,降低成本、提高效率;而這對數據分析師也提出了更高的要求。本文將和大家分享數據分析師的演變、數據分析價值體系、數據分析師必備的四大能力、七大常用思路以及實戰分析案例。

數據分析師的前世今生

在介紹數據分析師之前,我們先來看一下這幾個歷史人物,看看他們都跟數據分析師有著怎樣的淵源?

  歷史上大名鼎鼎的分析師

上面展示的六個歷史人物(從左往右,從上往下)分別是:張良、管仲、蕭何、孫斌、鬼谷子和諸葛亮。他們是歷史上大名鼎鼎的謀士,有的還做過丞相。他們博覽群書、眼光獨到,通過對大量史實進行總結發現了很多規律,并且在實踐中成功預測了很多事件。他們通過 “歷史統計——總結分析——預測未來”的實踐為自己的組織創造了絕大的價值,而這就是“數據分析師”的前身。

那么現在,數據分析師需要哪些必備技能,如何成為一名優秀的數據分析師呢?

數據分析師的價值金字塔

一個完整的企業數據分析體系涉及到多個環節:采集、清理、轉化、存儲、可視化、分析決策等等。其中,不同環節工作內容不一樣,消耗的時間和產生的價值也相差甚遠。

  數據分析師的價值金字塔

互聯網企業數據分析體系中至少有三方面的數據:用戶行為數據、交易訂單數據和CRM數據。工程師把不同來源的數據采集好,然后通過清理、轉化等環節統一到數據平臺上;再由專門的數據工程師從數據平臺上提出數據。這些工作占用了整個環節90%的時間,然而產生的價值卻只占10%。

這個金字塔再往上數據分析就和業務實際緊密結合,以報表、可視化等方式支持企業的業務決策,涵蓋產品、運營、市場、銷售、客戶支持各個一線部門。這個部分占用了整個環節才10%的時間,但是卻能產生90%的價值。

一個優秀的商務數據分析師應該以價值為導向,緊密結合產品、運營、銷售、客戶支持等實踐,支持各條業務線發現問題、解決問題并創造更多的價值。

數據分析師必備的四大能力

  1.全局觀

某日,產品經理跑過來問我:Hi, 能不能幫我看一下昨天產品新功能發送的數據?謝謝!條件反射我會說:好,我馬上給你!不過我還是禮貌性地問了一句:為什么需要這數據呢?產品經理回復道:哦,昨天新功能上線了,我想看看效果。知道了產品經理的目的,我就可以針對性地進行數據提取和分析,分析的結果和建議也就更加具有可操作性。

很多時候,數據分析師不能就數說數,陷入各種報表中不能自拔。一個優秀的數據分析師應該具有全局觀,碰到分析需求的時候退一步多問個為什么,更好地了解問題背景和分析目標。

2.專業度

某企業的數據科學家針對用戶流失情形進行建模預測,最終得到的用戶流失模型預測準確率高達90%多。準確率如此之高,讓商務分析師都不敢相信。經過檢驗,發現數據科學家的模型中有一個自變量是 “用戶是否點擊取消按鈕” 。而點擊了“取消”按鈕是用戶流失的重要征兆,做過這個動作的用戶基本上都會流失,用這個自變量來預測流失沒有任何業務意義和可操作性。

數據分析師要在所在行業(例如電商、O2O、社交、媒體、SaaS、互金等等)展示她/他的專業度,熟悉自己行業的業務流程和數據背后的意義,避免上面的數據笑話。

3.想象力

商業環境的變化越來越快、越來越復雜,一組商業數據的背后涉及到的影響因素是常人難以想象的。數據分析師應該在工作經驗的基礎上發揮想象力,大膽創新和假設。

根據硅谷公司的核心KPI(Facebook的4-2-2準則,LinkedIn的connection規律),我們也想找到互聯網企業驅動增長最核心的KPI。基于我們的想象力和”無埋點”全量數據采集的優勢, 我們創造了” GrowingIO留存魔法師” 。通過全量采集的數據,智能自動的后端計算,以及簡單的使用交互,留存魔法師可以幫助企業迅速找到與其留存最相關的用戶行為,就像魔法師輕輕揮動魔法棒一樣簡單。例如某 SaaS產品 ,在一周內創建過3個圖表的用戶(群)留存率非常高,那么”一周+3個+圖表”就是我們驅動用戶增長的魔法數字。

4.信任度

以銷售崗位為例,一個銷售人員首先要和用戶建立起信任;如果用戶不信任你的話,那他也很難信任或者購買你的產品。同理,數據分析師要和各部門同事建立良好的人際關系,形成一定的信任。各個部門的同事信任你了,他們才可能更容易接受你的分析結論和建議;否則事倍功半。

數據分析常見的七種思路

1.簡單趨勢

通過實時訪問趨勢了解產品使用情況,便于產品迅速迭代。訪問用戶量、訪問來源、訪問用戶行為三大指標對于趨勢分析具有重要意義。

2.多維分解

數據分析師可以根據分析需要,從多維度對指標進行分解。例如瀏覽器類型、操作系統類型、訪問來源、廣告來源、地區、網站/手機應用、設備品牌、APP版本等等維度。

3.轉化漏斗

按照已知的轉化路徑,借助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有注冊轉化分析、購買轉化分析等。

4.用戶分群

在精細化分析中,常常需要對有某個特定行為的用戶群組進行分析和比對;數據分析師需要將多維度和多指標作為分群條件,有針對性地優化產品,提升用戶體驗。

5.細查路徑

數據分析師可以觀察用戶的行為軌跡,探索用戶與產品的交互過程;進而從中發現問題、激發靈感亦或驗證假設。

6.留存分析

留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新增用戶”在一段時間內“回訪網站/app”的比例。數據分析師通過分析不同用戶群組的留存差異、使用過不同功能用戶的留存差異來找到產品的增長點。

7.A/B 測試

測試就是同時進行多個方案并行測試,但是每個方案僅有一個變量不同;然后以某種規則(例如用戶體驗、數據指標等)優勝略汰選擇最優的方案。數據分析師需要在這個過程中選擇合理的分組樣本、監測數據指標、事后數據分析和不同方案評估。

數據分析實戰案例

某社交平臺推出付費高級功能,并且以EDM(Email Direct Marketing,電子郵件營銷)的形式向目標用戶推送,用戶可以直接點擊郵件中的鏈接完成注冊。該渠道的注冊轉化率一直在10%-20%之間;但是8月下旬開始注冊轉化率急劇下降,甚至不到5%。

如果你是該公司的數據分析師,你會如何分析這個問題呢?換言之,哪些因素可能造成EDM轉化率驟降?

一個優秀的數據分析師應該具有全局觀和專業度,從業務實際出發,綜合各個方面的可能性,因此,EDM注冊轉化率驟降的可能性羅列如下:

技術原因:ETL延遲或者故障,造成前端注冊數據缺失,注冊轉化率急劇下降;

外部因素:該時間節點是否有節假日,其他部門近期是否有向用戶發送推廣郵件,這些因素可能稀釋用戶的注意力;

內部因素:郵件的文案、設計是否有改變;郵件的到達率、打開率、點擊率是否正常;郵件的注冊流是否順暢。

經過逐一排查,數據分析師將原因鎖定在注冊流程上:產品經理在注冊環節添加了綁定信用卡的內容,導致用戶的注冊提交意愿大幅度下降,轉化率暴跌。

一個看似簡單的轉化率分析問題,它的背后是數據分析師各方面能力的體現:首先是技術層面,對ETL(數據抽取-轉換-載入)的理解和認識;其實是全局觀,對季節性、公司等層面的業務有清晰的了解;最后是專業度,對EDM業務的流程、設計等了如指掌。

練就數據分析的洪荒之力并非一朝一夕之功,而是在實踐中不斷成長和升華。一個優秀的數據分析師應該以價值為導向,放眼全局、立足業務、與人為善,用數據來驅動增長。

關鍵字:分析師數據缺失

本文摘自:互聯網

x 一名優秀的數據分析師是怎樣煉成的? 掃一掃
分享本文到朋友圈
當前位置:大數據數據分析 → 正文

一名優秀的數據分析師是怎樣煉成的?

責任編輯:editor004 |來源:企業網D1Net  2016-10-20 11:02:40 本文摘自:互聯網

近些年,互聯網公司對數據分析師崗位的需求越來越多,這不是偶然。

過去十多年,中國互聯網行業靠著人口紅利和流量紅利野蠻生長;而隨著流量獲取成本不斷提高、運營效率的不斷下降,這種粗放的經營模式已經不再可行。互聯網企業迫切需要通過數據分析來實現精細化運營,降低成本、提高效率;而這對數據分析師也提出了更高的要求。本文將和大家分享數據分析師的演變、數據分析價值體系、數據分析師必備的四大能力、七大常用思路以及實戰分析案例。

數據分析師的前世今生

在介紹數據分析師之前,我們先來看一下這幾個歷史人物,看看他們都跟數據分析師有著怎樣的淵源?

  歷史上大名鼎鼎的分析師

上面展示的六個歷史人物(從左往右,從上往下)分別是:張良、管仲、蕭何、孫斌、鬼谷子和諸葛亮。他們是歷史上大名鼎鼎的謀士,有的還做過丞相。他們博覽群書、眼光獨到,通過對大量史實進行總結發現了很多規律,并且在實踐中成功預測了很多事件。他們通過 “歷史統計——總結分析——預測未來”的實踐為自己的組織創造了絕大的價值,而這就是“數據分析師”的前身。

那么現在,數據分析師需要哪些必備技能,如何成為一名優秀的數據分析師呢?

數據分析師的價值金字塔

一個完整的企業數據分析體系涉及到多個環節:采集、清理、轉化、存儲、可視化、分析決策等等。其中,不同環節工作內容不一樣,消耗的時間和產生的價值也相差甚遠。

  數據分析師的價值金字塔

互聯網企業數據分析體系中至少有三方面的數據:用戶行為數據、交易訂單數據和CRM數據。工程師把不同來源的數據采集好,然后通過清理、轉化等環節統一到數據平臺上;再由專門的數據工程師從數據平臺上提出數據。這些工作占用了整個環節90%的時間,然而產生的價值卻只占10%。

這個金字塔再往上數據分析就和業務實際緊密結合,以報表、可視化等方式支持企業的業務決策,涵蓋產品、運營、市場、銷售、客戶支持各個一線部門。這個部分占用了整個環節才10%的時間,但是卻能產生90%的價值。

一個優秀的商務數據分析師應該以價值為導向,緊密結合產品、運營、銷售、客戶支持等實踐,支持各條業務線發現問題、解決問題并創造更多的價值。

數據分析師必備的四大能力

  1.全局觀

某日,產品經理跑過來問我:Hi, 能不能幫我看一下昨天產品新功能發送的數據?謝謝!條件反射我會說:好,我馬上給你!不過我還是禮貌性地問了一句:為什么需要這數據呢?產品經理回復道:哦,昨天新功能上線了,我想看看效果。知道了產品經理的目的,我就可以針對性地進行數據提取和分析,分析的結果和建議也就更加具有可操作性。

很多時候,數據分析師不能就數說數,陷入各種報表中不能自拔。一個優秀的數據分析師應該具有全局觀,碰到分析需求的時候退一步多問個為什么,更好地了解問題背景和分析目標。

2.專業度

某企業的數據科學家針對用戶流失情形進行建模預測,最終得到的用戶流失模型預測準確率高達90%多。準確率如此之高,讓商務分析師都不敢相信。經過檢驗,發現數據科學家的模型中有一個自變量是 “用戶是否點擊取消按鈕” 。而點擊了“取消”按鈕是用戶流失的重要征兆,做過這個動作的用戶基本上都會流失,用這個自變量來預測流失沒有任何業務意義和可操作性。

數據分析師要在所在行業(例如電商、O2O、社交、媒體、SaaS、互金等等)展示她/他的專業度,熟悉自己行業的業務流程和數據背后的意義,避免上面的數據笑話。

3.想象力

商業環境的變化越來越快、越來越復雜,一組商業數據的背后涉及到的影響因素是常人難以想象的。數據分析師應該在工作經驗的基礎上發揮想象力,大膽創新和假設。

根據硅谷公司的核心KPI(Facebook的4-2-2準則,LinkedIn的connection規律),我們也想找到互聯網企業驅動增長最核心的KPI。基于我們的想象力和”無埋點”全量數據采集的優勢, 我們創造了” GrowingIO留存魔法師” 。通過全量采集的數據,智能自動的后端計算,以及簡單的使用交互,留存魔法師可以幫助企業迅速找到與其留存最相關的用戶行為,就像魔法師輕輕揮動魔法棒一樣簡單。例如某 SaaS產品 ,在一周內創建過3個圖表的用戶(群)留存率非常高,那么”一周+3個+圖表”就是我們驅動用戶增長的魔法數字。

4.信任度

以銷售崗位為例,一個銷售人員首先要和用戶建立起信任;如果用戶不信任你的話,那他也很難信任或者購買你的產品。同理,數據分析師要和各部門同事建立良好的人際關系,形成一定的信任。各個部門的同事信任你了,他們才可能更容易接受你的分析結論和建議;否則事倍功半。

數據分析常見的七種思路

1.簡單趨勢

通過實時訪問趨勢了解產品使用情況,便于產品迅速迭代。訪問用戶量、訪問來源、訪問用戶行為三大指標對于趨勢分析具有重要意義。

2.多維分解

數據分析師可以根據分析需要,從多維度對指標進行分解。例如瀏覽器類型、操作系統類型、訪問來源、廣告來源、地區、網站/手機應用、設備品牌、APP版本等等維度。

3.轉化漏斗

按照已知的轉化路徑,借助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有注冊轉化分析、購買轉化分析等。

4.用戶分群

在精細化分析中,常常需要對有某個特定行為的用戶群組進行分析和比對;數據分析師需要將多維度和多指標作為分群條件,有針對性地優化產品,提升用戶體驗。

5.細查路徑

數據分析師可以觀察用戶的行為軌跡,探索用戶與產品的交互過程;進而從中發現問題、激發靈感亦或驗證假設。

6.留存分析

留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新增用戶”在一段時間內“回訪網站/app”的比例。數據分析師通過分析不同用戶群組的留存差異、使用過不同功能用戶的留存差異來找到產品的增長點。

7.A/B 測試

測試就是同時進行多個方案并行測試,但是每個方案僅有一個變量不同;然后以某種規則(例如用戶體驗、數據指標等)優勝略汰選擇最優的方案。數據分析師需要在這個過程中選擇合理的分組樣本、監測數據指標、事后數據分析和不同方案評估。

數據分析實戰案例

某社交平臺推出付費高級功能,并且以EDM(Email Direct Marketing,電子郵件營銷)的形式向目標用戶推送,用戶可以直接點擊郵件中的鏈接完成注冊。該渠道的注冊轉化率一直在10%-20%之間;但是8月下旬開始注冊轉化率急劇下降,甚至不到5%。

如果你是該公司的數據分析師,你會如何分析這個問題呢?換言之,哪些因素可能造成EDM轉化率驟降?

一個優秀的數據分析師應該具有全局觀和專業度,從業務實際出發,綜合各個方面的可能性,因此,EDM注冊轉化率驟降的可能性羅列如下:

技術原因:ETL延遲或者故障,造成前端注冊數據缺失,注冊轉化率急劇下降;

外部因素:該時間節點是否有節假日,其他部門近期是否有向用戶發送推廣郵件,這些因素可能稀釋用戶的注意力;

內部因素:郵件的文案、設計是否有改變;郵件的到達率、打開率、點擊率是否正常;郵件的注冊流是否順暢。

經過逐一排查,數據分析師將原因鎖定在注冊流程上:產品經理在注冊環節添加了綁定信用卡的內容,導致用戶的注冊提交意愿大幅度下降,轉化率暴跌。

一個看似簡單的轉化率分析問題,它的背后是數據分析師各方面能力的體現:首先是技術層面,對ETL(數據抽取-轉換-載入)的理解和認識;其實是全局觀,對季節性、公司等層面的業務有清晰的了解;最后是專業度,對EDM業務的流程、設計等了如指掌。

練就數據分析的洪荒之力并非一朝一夕之功,而是在實踐中不斷成長和升華。一個優秀的數據分析師應該以價值為導向,放眼全局、立足業務、與人為善,用數據來驅動增長。

關鍵字:分析師數據缺失

本文摘自:互聯網

電子周刊
回到頂部

關于我們聯系我們版權聲明隱私條款廣告服務友情鏈接投稿中心招賢納士

企業網版權所有 ©2010-2024 京ICP備09108050號-6 京公網安備 11010502049343號

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 丰宁| 饶平县| 富阳市| 吉木萨尔县| 海丰县| 武强县| 明水县| 罗定市| 昌江| 长治县| 崇文区| 合川市| 泗阳县| 新竹市| 中方县| 台东市| 龙井市| 玛纳斯县| 德格县| 延庆县| 霍林郭勒市| 伊金霍洛旗| 雅江县| 南郑县| 布尔津县| 昌图县| 禹城市| 泰安市| 长沙市| 嘉鱼县| 蕉岭县| 光泽县| 永年县| 阳泉市| 健康| 会同县| 科技| 武安市| 乌兰浩特市| 延安市| 县级市|