精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當前位置:測試產品專區 → 正文

網絡分析的基本原理

責任編輯:vivian |來源:企業網D1Net  2011-09-14 09:28:12 本文摘自:電子工程世界

 一種獨特的儀器

網絡分析儀是一種功能強大的儀器,正確使用時,可以達到極高的精度。它的應用也十分廣泛,在很多行業都不可或缺,尤其在測量無線射頻(RF)元件和設備的線性特性方面非常有用。現代網絡分析儀還可以應用于更具體的場合,例如,信號完整性和材料的測量。隨著業界第一款PXI網絡分析儀-NI PXIe - 5630的推出,你完全可以擺脫傳統網絡分析儀的高成本和大占地面積的束縛,輕松地將網絡分析儀應用于設計驗證和產線測試。

  網絡分析儀的發展

你可以使用圖1所示的NI PXIe-5630矢量網絡分析儀測量設備的幅度,相位和阻抗。由于網絡分析儀是一種封閉的激勵-響應系統,你可以在測量RF特性時實現絕佳的精度。當然,充分理解網絡分析儀的基本原理,對于你最大限度的受益于網絡分析儀非常重要。

 

 

圖1. NI PXle-5630 矢量網絡分析儀

在過去的十年中,矢量網絡分析儀由于其較低的成本和高效的制造技術,流行度超過了標量網絡分析儀。雖然網絡分析理論已經存在了數十年,但是直到20世紀80年代早期第一臺現代獨立臺式分析儀才誕生。在此之前,網絡分析儀身形龐大復雜,由眾多儀器和外部器件組合而成,且功能受限。NI PXIe-5630的推出標志著網絡分析儀發展的又一個里程碑,它將矢量網絡分析功能成功地賦予了靈活,軟件定義的PXI模塊化儀器平臺。

通常我們需要大量的測量實踐,才能實現精確的幅值和相位參數測量,避免重大錯誤。由于射頻儀器測量的不確定性,小的錯誤很可能會被忽略不計。而網絡分析儀作為一種精密的儀器能夠測量出極小的錯誤。

  網絡分析理論

網絡是一個被高頻率使用的術語,有很多種現代的定義。就網絡分析而言,網絡指一組內部相互關聯的電子元器件。網絡分析儀的功能之一就是量化兩個射頻元件間的阻抗不匹配,最大限度地提高功率效率和信號的完整性。每當射頻信號由一個元件進入另一個時,總會有一部分信號被反射,而另一部分被傳輸,類似于圖2所示。

這就好比光源發出的光射向某種光學器件,例如透鏡。其中,透鏡就類似于一個電子網絡。根據透鏡的屬性,一部分光將反射回光源,而另一部分光被傳輸過去。根據能量守恒定律,被反射的信號和傳輸信號的能量總和等于原信號或入射信號的能量。在這個例子中,由于熱量產生的損耗通常是微不足道的,所以忽略不計。

 

 

圖2. 利用光來類比網絡分析的一個基本原理

 我們可以定義參數反射系數(G),它是一個包含幅值和相位的矢量,代表被反射的光占總(入射)光的比例。同樣,定義傳輸系數(T)代表傳輸的光占入射光的矢量比。圖3示意了這兩個參數。

 


圖3. 傳輸系數(T)和反射系數(G)

 

通過反射系數和傳輸系數,你可以更深入地了解被測器件(DUT)的性能。回顧光的類比,如果DUT是一面鏡子,你會希望得到高反射系數。如果DUT是一個鏡頭,你會希望得到高傳輸系數。而太陽鏡可能同時具有反射和透射特性。

電子網絡的測量方式與測量光器件的方式類似。網絡分析儀產生一個正弦信號,通常是一個掃頻信號。DUT響應時,會傳輸并且反射入射信號。傳輸和反射信號的強度通常隨著入射信號的頻率發生變化。

DUT對于入射信號的響應是DUT性能以及系統特性阻抗不連續性的表征。例如,帶通濾波器的帶外具有很高的反射系數,帶內則具有較高的傳輸系數。如果DUT 略微偏離特性阻抗則會造成阻抗失配,產生額外的非期望響應信號。我們的目標是建立一個精確的測量方法,測量DUT響應,同時最大限度的減少或消除不確定性。

  網絡分析儀測量方法

反射系數(G)和傳輸系數(T)分別對應入射信號中反射信號和傳輸信號所占的比例。圖3示意了這兩個向量。現代網絡分析基于散射參數或S-參數擴充了這種思想。

S-參數是一種復雜的向量,它們代表了兩個射頻信號的比值。S-參數包含幅值和相位,在笛卡爾形式下表現為實和虛。S-參數用S坐標系表示,X代表DUT被測量的輸出端,Y代表入射RF信號激勵的DUT輸入端。圖4示意了一個簡單的雙端口器件,它可以表征為射頻濾波器,衰減器或放大器。

關鍵字:網絡分析儀基本原理

本文摘自:電子工程世界

x 網絡分析的基本原理 掃一掃
分享本文到朋友圈
當前位置:測試產品專區 → 正文

網絡分析的基本原理

責任編輯:vivian |來源:企業網D1Net  2011-09-14 09:28:12 本文摘自:電子工程世界

 一種獨特的儀器

網絡分析儀是一種功能強大的儀器,正確使用時,可以達到極高的精度。它的應用也十分廣泛,在很多行業都不可或缺,尤其在測量無線射頻(RF)元件和設備的線性特性方面非常有用。現代網絡分析儀還可以應用于更具體的場合,例如,信號完整性和材料的測量。隨著業界第一款PXI網絡分析儀-NI PXIe - 5630的推出,你完全可以擺脫傳統網絡分析儀的高成本和大占地面積的束縛,輕松地將網絡分析儀應用于設計驗證和產線測試。

  網絡分析儀的發展

你可以使用圖1所示的NI PXIe-5630矢量網絡分析儀測量設備的幅度,相位和阻抗。由于網絡分析儀是一種封閉的激勵-響應系統,你可以在測量RF特性時實現絕佳的精度。當然,充分理解網絡分析儀的基本原理,對于你最大限度的受益于網絡分析儀非常重要。

 

 

圖1. NI PXle-5630 矢量網絡分析儀

在過去的十年中,矢量網絡分析儀由于其較低的成本和高效的制造技術,流行度超過了標量網絡分析儀。雖然網絡分析理論已經存在了數十年,但是直到20世紀80年代早期第一臺現代獨立臺式分析儀才誕生。在此之前,網絡分析儀身形龐大復雜,由眾多儀器和外部器件組合而成,且功能受限。NI PXIe-5630的推出標志著網絡分析儀發展的又一個里程碑,它將矢量網絡分析功能成功地賦予了靈活,軟件定義的PXI模塊化儀器平臺。

通常我們需要大量的測量實踐,才能實現精確的幅值和相位參數測量,避免重大錯誤。由于射頻儀器測量的不確定性,小的錯誤很可能會被忽略不計。而網絡分析儀作為一種精密的儀器能夠測量出極小的錯誤。

  網絡分析理論

網絡是一個被高頻率使用的術語,有很多種現代的定義。就網絡分析而言,網絡指一組內部相互關聯的電子元器件。網絡分析儀的功能之一就是量化兩個射頻元件間的阻抗不匹配,最大限度地提高功率效率和信號的完整性。每當射頻信號由一個元件進入另一個時,總會有一部分信號被反射,而另一部分被傳輸,類似于圖2所示。

這就好比光源發出的光射向某種光學器件,例如透鏡。其中,透鏡就類似于一個電子網絡。根據透鏡的屬性,一部分光將反射回光源,而另一部分光被傳輸過去。根據能量守恒定律,被反射的信號和傳輸信號的能量總和等于原信號或入射信號的能量。在這個例子中,由于熱量產生的損耗通常是微不足道的,所以忽略不計。

 

 

圖2. 利用光來類比網絡分析的一個基本原理

 我們可以定義參數反射系數(G),它是一個包含幅值和相位的矢量,代表被反射的光占總(入射)光的比例。同樣,定義傳輸系數(T)代表傳輸的光占入射光的矢量比。圖3示意了這兩個參數。

 


圖3. 傳輸系數(T)和反射系數(G)

 

通過反射系數和傳輸系數,你可以更深入地了解被測器件(DUT)的性能。回顧光的類比,如果DUT是一面鏡子,你會希望得到高反射系數。如果DUT是一個鏡頭,你會希望得到高傳輸系數。而太陽鏡可能同時具有反射和透射特性。

電子網絡的測量方式與測量光器件的方式類似。網絡分析儀產生一個正弦信號,通常是一個掃頻信號。DUT響應時,會傳輸并且反射入射信號。傳輸和反射信號的強度通常隨著入射信號的頻率發生變化。

DUT對于入射信號的響應是DUT性能以及系統特性阻抗不連續性的表征。例如,帶通濾波器的帶外具有很高的反射系數,帶內則具有較高的傳輸系數。如果DUT 略微偏離特性阻抗則會造成阻抗失配,產生額外的非期望響應信號。我們的目標是建立一個精確的測量方法,測量DUT響應,同時最大限度的減少或消除不確定性。

  網絡分析儀測量方法

反射系數(G)和傳輸系數(T)分別對應入射信號中反射信號和傳輸信號所占的比例。圖3示意了這兩個向量。現代網絡分析基于散射參數或S-參數擴充了這種思想。

S-參數是一種復雜的向量,它們代表了兩個射頻信號的比值。S-參數包含幅值和相位,在笛卡爾形式下表現為實和虛。S-參數用S坐標系表示,X代表DUT被測量的輸出端,Y代表入射RF信號激勵的DUT輸入端。圖4示意了一個簡單的雙端口器件,它可以表征為射頻濾波器,衰減器或放大器。

關鍵字:網絡分析儀基本原理

本文摘自:電子工程世界

電子周刊
回到頂部

關于我們聯系我們版權聲明隱私條款廣告服務友情鏈接投稿中心招賢納士

企業網版權所有 ©2010-2024 京ICP備09108050號-6 京公網安備 11010502049343號

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 达尔| 馆陶县| 佛教| 班玛县| 怀远县| 峨边| 华容县| 安平县| 海林市| 濮阳市| 张家界市| 那曲县| 手游| 沙坪坝区| 彰化县| 小金县| 太和县| 定兴县| 迁安市| 乌审旗| 高青县| 左贡县| 卢湾区| 沙田区| 遵义市| 唐山市| 镇平县| 昭苏县| 定州市| 浦城县| 嵊泗县| 固镇县| 方城县| 沂南县| 昆山市| 图木舒克市| 宽城| 青岛市| 翼城县| 阳西县| 泾川县|