在大數據推動的商業革命暗涌中,要么學會使用大數據的杠桿創造商業價值,要么被大數據驅動的新生代商業格局淘汰。
最早關于大數據的故事發生在美國第二大的超市塔吉特百貨(Target)。孕婦對于零售商來說是個含金量很高的顧客群體。但是他們一般會去專門的孕婦商店而不是在Target購買孕期用品。人們一提起Target,往往想到的都是清潔用品、襪子和手紙之類的日常生活用品,卻忽視了Target有孕婦需要的一切。那么Target有什么辦法可以把這部分細分顧客從孕婦產品專賣店的手里截留下來呢?
為此,Target的市場營銷人員求助于Target的顧客數據分析部(Guest Data & Analytical Services)的高級經理Andrew Pole,要求他建立一個模型,在孕婦第2個妊娠期就把她們給確認出來。在美國出生記錄是公開的,等孩子出生了,新生兒母親就會被鋪天蓋地的產品優惠廣告包圍,那時候Target再行動就晚了,因此必須趕在孕婦第2個妊娠期行動起來。如果Target能夠趕在所有零售商之前知道哪位顧客懷孕了,市場營銷部門就可以早早的給他們發出量身定制的孕婦優惠廣告,早早圈定寶貴的顧客資源。
可是懷孕是很私密的信息,如何能夠準確地判斷哪位顧客懷孕了呢?Andrew Pole想到了Target有一個迎嬰聚會(baby shower)的登記表。Andrew Pole開始對這些登記表里的顧客的消費數據進行建模分析,不久就發現了許多非常有用的數據模式。比如模型發現,許多孕婦在第2個妊娠期的開始會買許多大包裝的無香味護手霜;在懷孕的最初20周大量購買補充鈣、鎂、鋅的善存片之類的保健品。最后Andrew Pole選出了25種典型商品的消費數據構建了“懷孕預測指數”,通過這個指數,Target能夠在很小的誤差范圍內預測到顧客的懷孕情況,因此Target就能早早地把孕婦優惠廣告寄發給顧客。
那么,顧客收到這樣的廣告會不會嚇壞了呢?Target很聰明地避免了這種情況,它把孕婦用品的優惠廣告夾雜在其他一大堆與懷孕不相關的商品優惠廣告當中,這樣顧客就不知道Target知道她懷孕了。百密一疏的是,Target的這種優惠廣告間接地令一個蒙在鼓里的父親意外發現他高中生的女兒懷孕了,此事甚至被《紐約時報》報道了,結果Target大數據的巨大威力轟動了全美。
根據Andrew Pole的大數據模型,Target制訂了全新的廣告營銷方案,結果Target的孕期用品銷售呈現了爆炸性的增長。Andrew Pole的大數據分析技術從孕婦這個細分顧客群開始向其他各種細分客戶群推廣,從Andrew Pole加入Target的2002年到2010年間,Target的銷售額從440億美元增長到了670億美元。
我們可以想象的是,許多孕婦在渾然不覺的情況下成了Target常年的忠實擁泵,許多孕婦產品專賣店也在渾然不知的情況下破產。渾然不覺的背景里,大數據正在推動一股強勁的商業革命暗涌,商家們早晚要面對的一個問題就是:究竟是在渾然不覺中崛起,還是在渾然不覺中滅亡。
大數據是誰?
大數據炙手可熱,但是能說清楚大數據是什么的人卻不多。要真正弄明白什么是大數據,我們首先得看看Target是怎么收集大數據的。
只要有可能,Target的大數據系統會給每一個顧客編一個ID號。你刷信用卡、使用優惠券、填寫調查問卷、郵寄退貨單、打客服電話、開啟廣告郵件、訪問官網,所有這一切行為都會記錄進你的ID號。
而且這個ID號還會對號入座的記錄下你的人口統計信息:年齡、是否已婚、是否有子女、所住市區、住址離Target的車程、薪水情況、最近是否搬過家、錢包里的信用卡情況、常訪問的網址等等。Target還可以從其他相關機構那里購買你的其他信息:種族、就業史、喜歡讀的雜志、破產記錄、婚姻史、購房記錄、求學記錄、閱讀習慣等等。乍一看,你會覺得這些數據毫無意義,但在Andrew Pole和顧客數據分析部的手里,這些看似無用的數據便爆發了前述強勁的威力。
在商業領域,大數據就是像Target那樣收集起來的關于消費者行為的海量相關數據。這些數據超越了傳統的存儲方式和數據庫管理工具的功能范圍,必須用到大數據存儲、搜索、分析和可視化技術(比如云計算)才能挖掘出巨大商業價值。
大數據的商業價值
大數據這么火,因此很多人就跟起風來,言必稱大數據,可是很多人不但沒搞明白大數據是什么的問題,也不知道大數據究竟能往哪些方面挖掘出巨大的商業價值。這樣瞎子摸象般的跟風注定了是要以慘敗告終的,就像以前一窩蜂地追逐社交網絡和團購一樣。那么大數據究竟能往哪些方面挖掘出巨大的商業價值呢?根據IDC和麥肯錫的大數據研究結果的總結,大數據主要能在以下4個方面挖掘出巨大的商業價值:對顧客群體細分,然后對每個群體量體裁衣般的采取獨特的行動;運用大數據模擬實境,發掘新的需求和提高投入的回報率;提高大數據成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率;進行商業模式、產品和服務的創新。筆者把他們簡稱為大數據的4個商業價值杠桿。企業在大踏步向大數據領域投入之前,必須清楚地分析企業自身這4個杠桿的實際情況和強弱程度。
1.對顧客群體細分,然后對每個群體量體裁衣般的采取獨特的行動。本文開頭Target的故事就是這個杠桿的案例,瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。云存儲的海量數據和大數據的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。比如在大數據時代之前,要搞清楚海量顧客的懷孕情況,得投入驚人的人力、物力、財力,使得這種細分行為毫無商業意義。
2.運用大數據模擬實境,發掘新的需求和提高投入的回報率?,F在越來越多的產品中都裝有傳感器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網絡也在產生著海量的數據。云計算和大數據分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以數據化。大數據技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變量(比如不同地區不同促銷方案)的情況下何種方案投入回報最高。
3.提高大數據成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。大數據能力強的部門可以通過云計算、互聯網和內部搜索引擎把大數據成果和大數據能力比較薄弱的部門分享,幫助他們利用大數據創造商業價值。這個杠桿的案例是關于沃爾瑪的一個故事。
沃爾瑪開發了一個叫做Retail Link的大數據工具,通過這個工具供應商可以事先知道每家店的賣貨和庫存情況,從而可以在沃爾瑪發出指令前自行補貨,這可以極大地減少斷貨的情況和供應鏈整體的庫存水平。在這個過程中,供應商可以更多的控制商品在店內的陳設,可以通過和店內工作人員更多地接觸,提高他們的產品知識;沃爾瑪可以降低庫存成本,享受員工產品知識提高的成果,減少店內商品陳設的投入。綜合起來,整個供應鏈可以在成本降低的情況下,提高服務的質量,供應商和沃爾瑪的品牌價值也同時得到了提升。通過在整條供應鏈上分享大數據技術,沃爾瑪引爆了零售業的生產效率革命。
4.進行商業模式,產品和服務的創新。大數據技術使公司可以加強已有的產品和服務,創造新的產品和服務,甚至打造出全新的商業模式。這個杠桿將引用Tesco為案例。Tesco收集了海量的顧客數據,通過對每位顧客海量數據的分析,Tesco對每位顧客的信用程度和相關風險都會有一個極為準確的評估。在這個基礎上,Tesco推出了自己的信用卡,未來Tesco還有野心推出自己的存款服務。
大數據的商業革命
通過以上4個杠桿,大數據能夠產生出巨大的商業價值,難怪麥肯錫說大數據將是傳統4大生產要素之后的第5大生產要素。大數據對市場占有率、成本控制、投入回報率和用戶體驗都會起到極大的促進作用,大數據優勢將成為企業最值得倚重的比較競爭優勢。根據麥肯錫的估計,如果零售商能夠充分發揮大數據的優勢,其營運利潤率就會有年均60%的增長空間,生產效率將會實現年均0.5%-1%的增長幅度。在大數據這個概念炒熱起來的當下,人們才發現像沃爾瑪、Target、亞馬遜、Tesco這樣的商業巨頭已經不聲不響地運用了大數據技術好多年,用大數據驅動市場營銷、驅動成本控制、驅動產品和服務創新、驅動管理和決策的創新、驅動商業模式的創新。許多商界驕子慨嘆競爭不過Target們的不解之謎也終于告破。
在大數據推動的商業革命暗涌中,與時俱進絕不僅僅是附庸風雅的卡位之戰,要么學會使用大數據的杠桿創造商業價值,要么被大數據驅動的新生代商業格局淘汰。這是天賜良機,更是生死之戰。成功者將是中國產業鏈升級獨領風騷的梟雄,失敗者擁有的只有遺憾。