精品国产一级在线观看,国产成人综合久久精品亚洲,免费一级欧美大片在线观看

當前位置:大數據業界動態 → 正文

一篇文章讓你知道什么是大數據挖掘技術

責任編輯:cres |來源:企業網D1Net  2018-05-16 14:23:59 本文摘自:中國IDC圈

大數據如果想要產生價值,對它的處理過程無疑是非常重要的,其中大數據分析和大數據挖掘就是最重要的兩部分。本期小編就為大家講解大數據挖掘技術,讓大家輕輕松松弄懂什么是大數據挖掘技術。
 
什么是大數據挖掘?
 
數據挖掘(Data Mining)是從大量的、不完全的、有噪聲的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
 
數據挖掘對象
 
根據信息存儲格式,用于挖掘的對象有關系數據庫、面向對象數據庫、數據倉庫、文本數據源、多媒體數據庫、空間數據庫、時態數據庫、異質數據庫以及Internet等。
 
數據挖掘流程
 
定義問題:清晰地定義出業務問題,確定數據挖掘的目的。
 
數據準備:數據準備包括:選擇數據–在大型數據庫和數據倉庫目標中 提取數據挖掘的目標數據集;數據預處理–進行數據再加工,包括檢查數據的完整性及數據的一致性、去噪聲,填補丟失的域,刪除無效數據等。
 
數據挖掘:根據數據功能的類型和和數據的特點選擇相應的算法,在凈化和轉換過的數據集上進行數據挖掘。
 
結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。
 
數據挖掘分類
 
直接數據挖掘:目標是利用可用的數據建立一個模型,這個模型對剩余的數據,對一個特定的變量(可以理解成數據庫中表的屬性,即列)進行描述。
 
間接數據挖掘:目標中沒有選出某一具體的變量,用模型進行描述;而是在所有的變量中建立起某種關系。
 
數據挖掘的方法
 
神經網絡方法
 
神經網絡由于本身良好的魯棒性、自組織自適應性、并行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
 
遺傳算法
 
遺傳算法是一種基于生物自然選擇與遺傳機理的隨機搜索算法,是一種仿生全局優化方法。遺傳算法具有的隱含并行性、易于和其它模型結合等性質使得它在數據挖掘中被加以應用。
 
決策樹方法
 
決策樹是一種常用于預測模型的算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。
 
粗集方法
 
粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;算法簡單,易于操作。粗集處理的對象是類似二維關系表的信息表。
 
覆蓋正例排斥反例方法
 
它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與字段取值構成的選擇子相容則舍去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。
 
統計分析方法
 
在數據庫字段項之間存在兩種關系:函數關系和相關關系,對它們的分析可采用統計學方法,即利用統計學原理對數據庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。
 
模糊集方法
 
即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。
 
數據挖掘任務
 
關聯分析
 
兩個或兩個以上變量的取值之間存在某種規律性,就稱為關聯。數據關聯是數據庫中存在的一類重要的、可被發現的知識。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出數據庫中隱藏的關聯網。一般用支持度和可信度兩個閥值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
 
聚類分析
 
聚類是把數據按照相似性歸納成若干類別,同一類中的數據彼此相似,不同類中的數據相異。聚類分析可以建立宏觀的概念,發現數據的分布模式,以及可能的數據屬性之間的相互關系。
 
分類
 
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,并用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的算法而求得分類規則。分類可被用于規則描述和預測。
 
預測
 
預測是利用歷史數據找出變化規律,建立模型,并由此模型對未來數據的種類及特征進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
 
時序模式
 
時序模式是指通過時間序列搜索出的重復發生概率較高的模式。與回歸一樣,它也是用己知的數據預測未來的值,但這些數據的區別是變量所處時間的不同。
 
偏差分析
 
在偏差中包括很多有用的知識,數據庫中的數據存在很多異常情況,發現數據庫中數據存在的異常情況是非常重要的。偏差檢驗的基本方法就是尋找觀察結果與參照之間的差別。

關鍵字:大數據數據挖掘

本文摘自:中國IDC圈

x 一篇文章讓你知道什么是大數據挖掘技術 掃一掃
分享本文到朋友圈
當前位置:大數據業界動態 → 正文

一篇文章讓你知道什么是大數據挖掘技術

責任編輯:cres |來源:企業網D1Net  2018-05-16 14:23:59 本文摘自:中國IDC圈

大數據如果想要產生價值,對它的處理過程無疑是非常重要的,其中大數據分析和大數據挖掘就是最重要的兩部分。本期小編就為大家講解大數據挖掘技術,讓大家輕輕松松弄懂什么是大數據挖掘技術。
 
什么是大數據挖掘?
 
數據挖掘(Data Mining)是從大量的、不完全的、有噪聲的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
 
數據挖掘對象
 
根據信息存儲格式,用于挖掘的對象有關系數據庫、面向對象數據庫、數據倉庫、文本數據源、多媒體數據庫、空間數據庫、時態數據庫、異質數據庫以及Internet等。
 
數據挖掘流程
 
定義問題:清晰地定義出業務問題,確定數據挖掘的目的。
 
數據準備:數據準備包括:選擇數據–在大型數據庫和數據倉庫目標中 提取數據挖掘的目標數據集;數據預處理–進行數據再加工,包括檢查數據的完整性及數據的一致性、去噪聲,填補丟失的域,刪除無效數據等。
 
數據挖掘:根據數據功能的類型和和數據的特點選擇相應的算法,在凈化和轉換過的數據集上進行數據挖掘。
 
結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。
 
數據挖掘分類
 
直接數據挖掘:目標是利用可用的數據建立一個模型,這個模型對剩余的數據,對一個特定的變量(可以理解成數據庫中表的屬性,即列)進行描述。
 
間接數據挖掘:目標中沒有選出某一具體的變量,用模型進行描述;而是在所有的變量中建立起某種關系。
 
數據挖掘的方法
 
神經網絡方法
 
神經網絡由于本身良好的魯棒性、自組織自適應性、并行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
 
遺傳算法
 
遺傳算法是一種基于生物自然選擇與遺傳機理的隨機搜索算法,是一種仿生全局優化方法。遺傳算法具有的隱含并行性、易于和其它模型結合等性質使得它在數據挖掘中被加以應用。
 
決策樹方法
 
決策樹是一種常用于預測模型的算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。
 
粗集方法
 
粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;算法簡單,易于操作。粗集處理的對象是類似二維關系表的信息表。
 
覆蓋正例排斥反例方法
 
它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與字段取值構成的選擇子相容則舍去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。
 
統計分析方法
 
在數據庫字段項之間存在兩種關系:函數關系和相關關系,對它們的分析可采用統計學方法,即利用統計學原理對數據庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。
 
模糊集方法
 
即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。
 
數據挖掘任務
 
關聯分析
 
兩個或兩個以上變量的取值之間存在某種規律性,就稱為關聯。數據關聯是數據庫中存在的一類重要的、可被發現的知識。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出數據庫中隱藏的關聯網。一般用支持度和可信度兩個閥值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
 
聚類分析
 
聚類是把數據按照相似性歸納成若干類別,同一類中的數據彼此相似,不同類中的數據相異。聚類分析可以建立宏觀的概念,發現數據的分布模式,以及可能的數據屬性之間的相互關系。
 
分類
 
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,并用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的算法而求得分類規則。分類可被用于規則描述和預測。
 
預測
 
預測是利用歷史數據找出變化規律,建立模型,并由此模型對未來數據的種類及特征進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
 
時序模式
 
時序模式是指通過時間序列搜索出的重復發生概率較高的模式。與回歸一樣,它也是用己知的數據預測未來的值,但這些數據的區別是變量所處時間的不同。
 
偏差分析
 
在偏差中包括很多有用的知識,數據庫中的數據存在很多異常情況,發現數據庫中數據存在的異常情況是非常重要的。偏差檢驗的基本方法就是尋找觀察結果與參照之間的差別。

關鍵字:大數據數據挖掘

本文摘自:中國IDC圈

電子周刊
回到頂部

關于我們聯系我們版權聲明隱私條款廣告服務友情鏈接投稿中心招賢納士

企業網版權所有 ©2010-2024 京ICP備09108050號-6 京公網安備 11010502049343號

^
  • <menuitem id="jw4sk"></menuitem>

    1. <form id="jw4sk"><tbody id="jw4sk"><dfn id="jw4sk"></dfn></tbody></form>
      主站蜘蛛池模板: 郧西县| 兴业县| 沁源县| 咸阳市| 景泰县| 广饶县| 通化县| 云南省| 上栗县| 宁蒗| 新龙县| 双鸭山市| 大厂| 民乐县| 渝中区| 瑞金市| 池州市| 华池县| 宁化县| 洛扎县| 兴城市| 钟祥市| 冕宁县| 黑水县| 冀州市| 呼伦贝尔市| 鄂托克旗| 彭州市| 武隆县| 大悟县| 上杭县| 辽阳县| 西贡区| 博湖县| 武穴市| 合水县| 西藏| 大连市| 四川省| 天祝| 罗城|