《企業網D1Net》4月3日訊
隨著大數據時代的到來,很多人對大數據產生了濃厚的興趣,然而,大數據只是一個新概念,很多認識都是不正確的。
大數據產生的背景是整個社會走向數字化,特別是社交網絡和各種傳感設備的發展。大數據分析擁有自身的特點,與計量經濟學既有區別又有聯系。當前對大數據的分析存在許多流行觀點,但其中很多核心觀點都值得商榷。
大數據產生的背景是整個社會走向數字化,特別是社交網絡和各種傳感設備的發展。云計算和搜索引擎的發展,使得對大數據的高效分析成為可能,核心問題是如何在種類繁多、數量龐大的數據中快速獲取有價值信息。大數據在社會分析、科學發現和商業決策中的作用越來越大,金融只是其中的一個應用領域。
什么是大數據
大數據是一個新概念,英文中至少有三個名稱:大數據(big data)、大尺度數據(big scale data)和大規模數據(massive data),至今未形成統一定義。但一般認為大數據具有四個基本特征(即所謂4V特征):數據體量龐大(volume)、價值密度低(value, 也有人理解成應用價值巨大)、來源廣泛和特征多樣(variety)、增長速度快(velocity, 也有人理解成需要高速分析能力)。
從學術角度,對大數據的討論基本屬于數據科學(Data Science)和數據挖掘(Data Mining)的范疇。
對大數據分析的主流誤解
舍恩伯格與合作者的《大數據時代》非常流行,但里面的很多核心觀點都值得商榷。
第一,他們認為,大數據分析不是針對隨機樣本,而是全體數據。盡管數據收集和分析手段足夠發達后,對全部數據的收集和分析成為可能,但從成本收益上衡量,這樣做不是總有必要。根據中心極限定理,統計分析質量與樣本數量之間存在平方根關系。比如,樣本數量提高100倍,分析質量提高10倍。而統計分析工作量與樣本數量之間存在線性關系。比如,樣本數量提高100倍,存儲和計算量一般增加100倍。這樣,樣本數量增長到一定程度后,新增工作量對應的成本就會超過質量提高產生的好處。因此,通過科學設計的抽樣調查獲得有代表性的樣本,在大數據分析中仍有價值。
第二,他們還認為,大數據分析不是因果關系,而是相關關系。這個說法在統計學中是老生常談,不是什么新觀點。統計學基于相關關系,只能被用來證偽因果關系,而不能被用來證實因果關系。大數據分析的基礎理論也是概率論和數理統計,從根本上就屬于相關關系的范疇。
第三,大數據分析也不是萬能的。基于大數據的預測可以抽象表述為:用 表示已知信息,用 表示未知信息,尋找關于 的函數 作為 的預測。預測誤差是 ,用 (類似于均方誤差)來衡量預測效果。概率論有一個基本結論:
對任意 ,總有 ,其中等號僅當時才成立,所以 也被稱為最佳預測(best predictor)。
可以看出兩點結論:首先,大數據分析中,各種算法的核心任務是使 盡可能接近理論上的最優預測 ;其次,即使在最優預測上, 代表的預測誤差仍不能被消除,是內生于信息結構的。比如,即使信息技術非常發達,如果現實世界中仍有部分信息不能被數字化(從而不能用在大數據分析中),這部分被“塵封”的信息就決定了大數據分析的有效邊界。
第四,大數據能降低信息不對稱的程度,但不能消除隨機性(不確定性);有助于評估風險(未來遭受損失的可能性,其中損失分布可計量),但不能消除奈特式不確定性(其中損失分布不可計量)。
D1Net評論:
大數據畢竟是一個新生兒,人們對它的認識會經歷一個由誤解到正確認識的過程,對于舍恩伯格而言,他關于大數據的一些觀點,也有很多值得商榷的地方,畢竟理論需要實踐來檢驗。