KK 提到:“要預測未來是非常困難的。但是我們有我們的優勢,因為技術都是有偏見的。通過技術的物理的特性,我們能夠預見、能了解未來技術會到哪里去,未來技術很長一段時間會是怎樣……”
以下是凱文·凱利的演講內容:
今天我想預測一下未來25年的技術發展趨勢:什么即將到來,哪些是不可阻擋之勢。很多未來會出現的事物其實無法預測,因為技術是一種趨勢,會側重某些方向,任何一門科學的發展都有其規律,包括數字技術。技術又會隨著實際情況的變化而發生趨勢性的變化,所以我的興趣在于探討技術發展趨勢變化的方向。
電線發明之后,人們希望尋找它的工作模式,而無論在什么國家,甚至什么星球,其實它的模式都是一樣的,這種反復出現的工作模式會為技術發展指明方向。
這些趨勢都是25年內的趨勢,具體的技術發明沒有辦法預測,因為具體的預測是不可能的,我們不知道未來 蘋果 是否仍然是一家成功的公司,iPhone是不是還會繼續受消費者喜愛,也不知道BAT會不會繼續存在。
這里談的都是長期趨勢的預測,技術將走向何方。我們理解事物的形態是沒有辦法改變的,比如四個輪子的車,四只腳的動物,這是都是事物自身規律決定的,這種形態也就必然的,但是就某種物種或者產品而言,比如斑馬或者某種機器人,就是偶然出現的,是我們可能沒有預料到的,我這里要討論的是關于技術的大方向。
想象一下,山谷里飄來一陣雨,每一個雨滴的路徑是不可預測的,但是他們運動的方向是可以預測的,都是向下的。像數字技術行業中哪家公司會贏,哪家公司會輸的問題,我在這里不做討論,我要討論的是不可逆轉的大方向。電話的出現是必然,而iPhone不是,互聯網的出現是必然的,而 Twitter 不是。我會討論電話,互聯網領域的發展趨勢。
人工智能早已來臨,只是你沒有感受到
最為重要的技術發展趨勢之一是人工智能,感知并讓產品更為智能的技術。大家可能對人工智能都不陌生,但是我想從一個不一樣的角度解釋它,讓大家對未來的智能制造業有所了解。
首先,人工智能的時代已經來臨,只是很多時候扮演幕后的角色,我們并沒有直接的了解。人工智能系統解讀X光片的本領已經比醫生更高;查閱法律證據的能力也比律師要高;我來中國坐的飛機大部分時間也是由人工智能系統,而不是飛行員在控制;開車的時候,帶有人工智能技術的剎車系統比人的判斷更好。 百度 和 谷歌 的人工智能技術可以分析照片,告訴你照片里面正在發生什么事情。
最近谷歌的人工智能系統戰勝了頂級的圍棋人類選手,這個系統甚至還可以不斷地學習如何下棋。過去十多年的電腦游戲,都是在和人工智能系統對戰,現在的系統不過知道如何對戰,還知道如何學習新的對戰本領,這有很大的不同,機器學習也是當今人工智能系統的最重要功能。
其實人工智慧(artificial smartness)要比人工智能(artificial intelligence)可能更適合來形容這種技術,因為現在應用這種技術的產品已經比人更聰明。比如,計算器要比人腦的算數能力高很多,GPS導航設備要比人對空間的認知好很多,百度可以記住6萬億個網頁,這遠遠超出人腦的記憶能力。
我們在汽車上采用人工智能系統,是因為它沒有人的那些不良駕駛習慣,去年死于交通肇事的人數有100萬,人類本就不應該開車,所以我們希望用人工智能技術來代替人,人工智能系統不會因為其他事情分心,也不會像人一樣想問題。
人工智能總在某方面超過人類,但不可能和人類一模一樣
人類對智力和智能的理解是錯誤的,單一維度的,片面的,只是認為老鼠的智力水平沒有猴子高,一般人的智力沒有天才高,這種理解可能并不正確。智力其實是一套思考方式,知識體系和工具,而這些方式,體系和工具構成了我們的思考和學習能力,每個人都不同,數量有幾百種,比如演繹推理,歸納推理,符號推理,邏輯,空間導航,記憶等等。
動物的智力也是由很多思維方式構成的,有的時候他們看待人類的方式也是它們所獨有的。一只松鼠或者其他嚙齒類動物的記憶能力超過人類,因為即使過了好多年,它們還可以記得當初在什么地方埋下了成千上萬顆橡果,這一點沒有人可以做到,所以某些動物的智力在某些方面下是超出人類的。
在設計人工智能系統的時候,我們遵循同樣的原則,讓它們可以以某一種特定的方式看待人類,而不是像人類一樣思考,其中有一條設計理念所有的工程師都會銘記心中,那就是產品不可能每一方面都能做到最優,總需要做出權衡。
各種人工智能系統產品總會在某一方面超出人類智力,但不可能做得跟人類一樣。在看待人類智能的時候,我們可能會將自己視為中心,其他智能圍著我們轉,就像宇宙學的地心說理論,而其實我們并不是什么中心。
我們對人類智能的理解會隨著人工智能技術提高而改變,而開發人工智能系統的過程就是不斷發現不同智力和思考模式的過程,而每一種模式對于研究人工智能都有用。很多時候,人類智能無法或者有相當大的難度去理解一些問題,無論是科學上的還是商業上的。
我們可以通過兩步法來解決這些問題,第一是開發一套異與人類思考方式的人工智能系統,第二是利用這些系統加上人類智能來共同解決這些問題。這個過程就是證明我們不是智能中心的過程,思維方式真的是多種多樣。
新經濟的財富引擎就是在接觸社會的同時擁有創造性思考的能力。一個人如果不接觸社會,可能會有異于常人的想法,但是如果他一直接收各方面信息,很難有創造性的想法。有些人工智能系統可能沒有人類聰明或者反應更快,但可能擁有不一樣的想法,這就是價值所在。
人工智能帶來的優勢不在于用不用,而在于怎么用
我還想介紹一下關于人工智能另一方面的觀點,人工智能還是第二次工業革命。第一次工業革命是從自然能源到人造能源的變革,那之前的農業時代都是靠人或者牲畜的肌肉力量,比如馬,驢等等的畜力:想修路就只能靠人力,而那之后有了蒸汽機,電動機等等設備;日用品,工業品都是用這些設備制造出來,人類也有了駕馭自然力的能力。比如駕駛一輛汽車,你就擁有了250馬力的功率,也可以使用機械設備建起摩天大廈,鋪設貫通全國的鐵路系統,建設生產鞋和椅子的工廠。
我們之所以有現在的生活,都是因為我們將人造能源作為一種商品進行交換,這些商品通過電力形式在全國范圍內流通,所有人都可以購買人造能源。農民不需要創造人造能源,而只需要購買就可以得到。
人造能源的流通是創新和創業精神的巨大引擎,比如一個農民有一套人力水泵,有了人造能源之后,他可能就會產生將其改造為自動水泵的想法,因為有了電和水泵,就可以制造電動泵。而將電動泵的例子放大幾萬倍,也就有了我們的城市,這就是我們所說的第一次工業革命。
現在人工智能的研制也要達到同樣目的,我們會在電動泵中加入人工智能系統,讓它變成一款智能水泵。而將智能水泵的例子在城市建設中放大,就是第二次工業革命,也就是讓電能驅動的設備具有認知功能,變得智能。這個進程不只包括制造業,而是整個經濟的升級。而如果沒有公司經營的智能升級和消費者的智能升級,制造業的智能升級也是不可能實現的。
第二次工業革命將實現整體經濟的智能化。在250馬力的汽車上匹配250種思維方式,不是人類的思維方式,而是人工智能的算法。問題是,如果你的企業有1000種思維方式24小時為你服務,你會用它們來做些什么?
未來,人工智能系統將部署在云端,作為一種商業資源,所有公司都可以購買這些資源來為商業拓展提供動力,人工智能將成為像電一樣的能源和人人可以購買使用的服務,這就是第二次工業革命的結果,讓人工智能的資源自由流動。
未來一萬家的新創企業所采用的模式可能非常相似,就是將他們的業務加入人工智能系統。正如第一次工業革命,將一種工具自動化一樣,第二次工業革命令自動化設備具有感知能力。谷歌認為人工智能就是下一次浪潮,所以它抓住這個機遇,從移動優先戰略過渡到人工智能優先戰略。現在,一些公司,比如谷歌, 微軟 , 亞馬遜 和Facebook ,已經開始出售云端人工智能系統的服務,價格大概是每100次查詢6美分。
未來制造業的競爭優勢不在于使用人工智能,因為所有人都會使用人工智能,競爭優勢在于用人工智能系統做什么事情,和別人有什么不同。真正實現將人工智能技術應用于自動可移動機器人,可能還有很長很長的路要走,因為功耗是一個很大的問題。人體的能效是非常高的,功率只有四分之一馬力,大腦的功耗也很小。
追求效率的工作歸于機器,不追求效率的工作歸于人類
雖然將人工智能技術應用于自動可移動機器人有困難,我們可以制造其他類型的機器人,比如那些并不用編程,只需要觀察你是怎么做一件事情的,然后就可以學會的那種機器人。這種機器人也有試錯的能力,在不斷的嘗試中,逐漸學會并掌握技能,這些已經實實在在地發生了。
有人擔心這些機器人會奪走工人的工作。是的,機器人可以幫人們完成某些任務,任何一份工作都需要完成許多任務,而人工智能和機器人所創造的任務數量要比他們拿走的任務數量多很多。
對于那些追求生產效率的工作,機器人最合適不過,反過來說,人類對于那些追求效率的工作并不重要。不追求效率的工作也有很多,創新這件事情本身就是不追求效率的,因為在創新的過程中,必然會有很多失敗;科學工作也是不追求效率的,因為實驗室的工作就是不斷試錯的過程,如果不犯錯誤,就不可能學到東西;藝術也是不追求效率的;人際關系也是不追求效率的。
很多我們認為重要的事情都是不追求效率的,這些就是需要人適合去完成的工作,也是需要我們付出更高代價得到的東西。所以,追求效率的工作歸機器人,不追求效率的工作讓人去做。創造,探索,實驗的工作,人可以比人工智能做得更好。
國際象棋世界冠軍加里·卡斯帕羅夫20年前輸給了超級電腦“深藍”,卡斯帕羅夫跟組織者抱怨說比賽不公平,因為IBM的深藍把所有與它交戰棋手的記錄都存儲在數據庫里面,如果卡斯帕羅夫也能使用這樣的數據庫,他也能取得勝利。
卡斯帕羅夫于是就發起了一項全新的國際象棋賽事,參賽者可以以擁有人工智能數據庫的人類身份參賽,參賽者也可以是人類“輔助”的人工智能。他把這個合成人工智能和人腦智能的“團隊”比喻成“人頭馬(centour)”,一半是人工智能,一半是人腦智能。過去四年,世界上最強的棋手還是這樣的“人頭馬”,有人類智慧的人工智能系統,它比單純的人腦智慧或者單純的人工智能都要聰明許多,因為它的思維方式與他們都不相同。
美國軍方也在利用人工智能來裝備部隊,讓人工智能和士兵共同完成任務。未來工人工資的高低也要視他們與人工智能,與機器人合作的情況而定,所以人類與人工智能的關系不是對立的,而是合作關系。人與人工智能的溝通交流方式采取的也應該是對話,而非打字的方式,而互聯網就是對話的途徑;未來,使用互聯網本身就是與人工智能系統對話。
這就是我們會看到的根本轉變,人工智能將對制造業產生影響,也會影響機構和公司。沒有智能的公司就沒有智能的制造業,這些準備擁抱人工智能的公司需要知道自己利用人工智能可以干什么,需要有敏銳的決策能力,需要分權管理。對于制造業企業而言,最大的挑戰是建立與人工智能相適應的生產流程和企業文化。
虛擬現實帶來的不是知識,是體驗
我在這里想討論的另外一個趨勢就是,人類需要與產品進行更多交流。斯蒂芬·斯皮爾伯格執導,湯姆·克魯斯主演的電影《少數派報告》就描繪了2050年的時候,湯姆·克魯斯所扮演的角色用各種方式,身體各個部位夸張的肢體運動與電腦的交流,抑或是手指,眼睛和面部表情細膩的姿態被智能設備,雷達所捕捉。而與電腦互動的最終途徑就是進入電腦,這就是我們稱為人工智能的技術。
杰倫·拉尼爾(Jaron Lanier)在1989年提出了虛擬現實的概念,通過一個頭戴式眼鏡打開了通向虛擬世界的大門。那時候很多人認為只要5年時間就可以實現,但其實花了25年的時間。為什么沒能馬上實現?因為那時候拉尼爾發明的頭戴式設備,按照現在美元的幣值要100萬美元,這個價格根本沒有辦法創造消費市場。
20多年以來,科技業發生了一些變化,其一就是智能手機的出現,智能手機研發的技術正是將虛擬現實推向市場所需要的,頭戴式設備的價格也因此大大降低。目前市面上有兩種虛擬現實技術,當然這兩種技術也是會演進的,一種沉浸式虛擬現實,一種是混合虛擬現實(MR)。
沉浸式虛擬現實可以讓人感覺置身從未到過的地方,比如山巔或者火星;混合虛擬現實讓人在真實的體驗房間中看到虛擬物體就像真實存在的東西一樣,體驗者甚至可以操控這些物體。
混合虛擬技術的研制更有挑戰性,但是如果開發混合虛擬技術不是問題,那么純虛擬現實的技術就也不是問題。
沉浸式虛擬現實可以帶人到去那些平時到不了的地方,或者因為這些地方不能去,或者太危險。而混合虛擬技術的用途其實更多,可以用于教學和訓練,比如去探索星系,從事設計工作,在虛擬情境中試用產品;也可以有虛擬多屏,想要多少有多少,微軟就有這樣一個系統,可以在頭戴式設備中創造虛擬的辦公室,可以讀書,看高清電影,視覺效果非常不錯,也可以有虛擬的同事。將現實和虛擬世界結合會產生非常有力的效果,比如Pokémon Go將虛擬物體和現實世界結合,造就了非常流行的游戲。
虛擬效果的產生需要用到手指和聽力,更重要的是虛擬現實得到了大腦的配合。一個很著名的虛擬現實技術試驗,就是讓體驗者站在一個房間里,戴上虛擬現實設備,虛擬世界當中的地突然塌陷出一個洞,并出現一個窄板橫跨在坑的兩端,需要實驗者配合從上面走過去。對于大腦不同部位,這個虛擬現實實驗有不同作用,對于閱讀區域和感受區域的作用是不同的;可能實驗者感覺要掉落下去,但其實他們知道并不會出現這種情況。
虛擬現實技術給人們帶來的不是知識或者信息,而是體驗。未來我們通過互聯網獲得的不只是知識,還有體驗,我們購買的是頭戴式設備體驗,下載的是體驗,分享的還是體驗。通過虛擬現實技術,我們可以體驗坐在別人旁邊,參加游行等等,而摘下設備之后,我們可能不記得看到了什么,但是那種經驗可能是難以忘懷的,這就是虛擬現實的力量。
虛擬現實技術在社交屬性方面,超過一切社交媒體,因為我的感受是,最令人驚嘆的不是虛擬世界,而是這個虛擬世界之中的人,我與他們分享經驗,我知道這些人并不真的存在,但是我真真切切地感受到他們的存在;我不會離他們太近,要保持距離,但可以和這些虛擬的人有情感上的聯結。虛擬現實技術創造的這種感覺和現實世界非常不同,可以幫助社交媒體提高社交屬性。
所有權本身是一種負累,不如思考產品怎樣向服務轉化
未來技術發展的另外一個趨勢是財產所有權的淡化,Uber是世界上最大的出租車公司,但是它本身不擁有出租車,Facebook是世界上最大的媒體公司,但是它本身沒有內容的所有權, 阿里巴巴 是世界上最大的零售公司,但是它沒有庫存,Airbnb是世界上最大的住宿服務提供商,但是它沒有地產。
所有權已經沒有以前那么重要,如果你隨時都可以使用到各種各樣的商品或者服務,那么所有權就沒有太大意義,因為所有權本身也是一種責任和負累。這種轉變對于制造業而言有非常重大意義,比如消費者只是使用而不是擁有車,對市場會產生很大影響,有計算表明,城市的汽車只有六分之一是真正必需的。
在數字領域也一樣,我已經不會去買電影碟片,因為如果隨時隨地可以看到電影的話,有什么必要買碟片呢?音樂和圖書也是一個道理。我可以通過訂閱的方式的看書,看電影,玩游戲,我也可以用同樣方式來預訂車輛來解決我的交通需要,或者預訂其他什么東西。
這種趨勢在交通領域非常明顯,Uber就是一個很好的例子。這種按需服務的模式還可能在其他領域不斷出現,比如3D打印,一小時遞送,其實就等于即時服務。
目前整個經濟中出現一個趨勢就是產品向服務的轉化,比如汽車是產品,但是在交通領域,可能人們并不買車,而是用其他方式獲取車輛帶來的便利,這會對汽車廠商的生產造成影響,對他們制造的車型造成影響。還有什么事情可以做?現在硅谷有超過9千家新創企業正在從事產品轉化為服務的業務,比如幫助食品,家具,酒店,醫院,醫療測試,玩具等等行業實現產品向服務的轉化。
分享經濟正在增長,這個毋庸贅言,而這個經濟形態還僅僅處于初期,還有很多待開發的領域,可以通過分享經濟增加他們的價值。
我所說的分享不僅是指汽車,還有許多可以通過協同合作,去共享那些可以共享但還沒有共享的東西,比如衣服,任務。我們正在開發這方面工具來幫助不同國家,不同大洲之間的人們合作完成共同的任務。比如維基百科就是技術發展的成果,很多互相不認識的人可以通過這個平臺分享知識;阿里巴巴和eBay也是一樣,互不認識的人在進行買賣。這個行業還處于初期,未來需要找到和100萬,500萬人協作的方式。
區塊鏈是另外一種分享經濟,一個基于信任的分布式計費協作系統;技術的進步讓我們可以使用加密系統來構建信任,有辦法與陌生人共同完成復雜的任務。分享,協作,追蹤,消息傳播,都可以實現商業變現。
流動、短暫的屏幕閱讀未來趨勢,所以真實性將成為稀缺資源
另一個行業趨勢與屏幕有關,屏幕無處不在,在中國,很多樓宇里有屏幕,甚至有些屏幕和紙一樣薄,可以彎曲。電子書不必只是一塊屏幕,可以是很多屏幕的合成。屏幕也不是單一的,可能會有多屏,第二張屏,第三張屏。
我們在使用屏幕瀏覽信息的同時,屏幕也在審視我們,軟件會監測,分析用戶的瀏覽內容,哪些內容吸引用戶的注意,甚至感知用戶的情緒。現在有軟件可以識別用戶的28種情緒,比如用戶是否是困惑的,心煩意亂的,不知所措的,感興趣的或者不喜歡的,軟件可以進而根據用戶的反應對內容做出相應改變。就像有人和你說話,會根據你臉上的表情變化來調整談話方式內容。
無論是東方還是西方,書籍都是文化的核心,法律具有權威,發生的事情都會記錄下來,幾千年來都是如此,而現在屏幕成了文化傳播的媒介,并且擁有和書籍完全不同的屬性。
書籍的內容是固定的,有權威的,而屏幕的內容是一直變化的,流動性很大,短暫存在的和開放的。所以我想從屏幕上得到真實性的東西會更難,更具挑戰性,但這就是屏幕文化的特點,數據流更大。
所有業務都是數據業務,業務的開展就是數據的流動
產品是靜止的,而加工處理和服務是流動的。流媒體,標簽和云計算都是流動的,不是一成不變的,因為數據是一直變化的,無論從事什么行業,比如鋼鐵業,制造業或者運輸業,所有行業的業務都和數據有關,業務的開展就是數據的流動。
智能制造業意味著無論你生產什么產品,你都必須成為一家軟件公司,和數據打交道,追蹤數據,了解客戶數據,以數據為中心。很多大的互聯網公司都意識到,數據其實比客戶本身更為有價值。所有能夠被跟蹤的數據都會得到跟蹤,這是不可避免的。比如經營一家店需要跟蹤顧客的數據,來分析購物時間,選擇商品類別,這樣就可以對經營策略做出調整。
虛擬現實技術也是對數據跟蹤的技術,所有的數據都被追蹤。《阿凡達》的制作就是通過追蹤人身體,手和臉部肌肉的運動完成的動效,角色的創造就是通過數據跟蹤完成的。
在虛擬世界中,我們對彼此的數據跟蹤要遠比在現實世界中對彼此的關注更多,我的預測是未來最大的公司一定是虛擬現實技術公司,因為虛擬現實公司會掌握更多的數據,更多的個人數據。
比如我們的運動軌跡,瀏覽內容和大腦活動,無所不在的數據追蹤幫助那些虛擬現實技術公司建筑他們的基礎設施。有很多像蘋果公司,Fitbit一樣追蹤我們的健康數據,我們其實也在通過這些技術追蹤自己的健康數據,以前可能每年進行一次的體檢,通過這些技術,其實時時刻刻都在發生,貫穿整個生命過程。
你的身體是否正常將會是可見的,我的身體是否正常的標準可能和你的不一樣,因為年齡和季節的不同;這些情況只有通過數據追蹤我們才能了解,也只有在數據完整的情況下才能做出個性化的診斷和藥物使用。
你的歷史數據很重要,同樣這種個性化的診斷也會隨著新數據的出現和分析發生變化。別人也在追蹤我們的數據,我們的朋友在追蹤我們的數據,這也是微信的功能之一。還是在那部《少數派報告》的電影里,連廣告都在追蹤湯姆克魯斯。
這些數據追蹤可能讓人感到不舒服,所以我們要考慮如何擺脫這種不舒服的感覺,對稱追蹤可能是一個解決辦法,也就是我需要知道誰在追蹤我的數據,他們要對我的數據負責任,并且我需要從這種追蹤中獲益。
如果這些都可以實現,那么這種數據追蹤就是沒有問題的。另外,數據追蹤和隱私是相關聯的。如果你想得到個性化的服務,無論是來自政府或者企業,抑或是交朋友,他們必須對你有所了解,你需要介紹自己。所以完全的個性化就意味著完全的透明,你需要對數據追蹤持開放的態度,反之,你就不可能得到個性化的產品和服務,這都是每個人可以做出選擇的,是否愿意接受這種數據追蹤意味著會得到個性化的服務。
我感覺比較吃驚的是,人們更傾向于選擇保持透明,接受數據追蹤來獲得某種技術帶來的便利,而不是相反。
未來25年最偉大的產品還沒被發明,你還沒遲到
這僅僅是一個開始,未來是難以預測的,如果時間倒退20年,我們不可能預料到會有現在的技術,在線地圖,數碼相機,信息技術等等。過去這三十年電腦和人工智能設備越來越小,未來可以將每個設備裝上一個芯片,就可以連接到物聯網,比如在燈泡上裝芯片,在椅子上,在鞋上,在門上,這些在以前都會被認為是不切實際的想法,可是現在,酒店的每扇門上都有一個計算設備。
對于未來不可知的世界,我們要保持開放的心態。我們目前只是出于虛擬現實技術發展的早期,我們對這個領域知之甚少,沒有在虛擬現實或者人工智能領域的專家。這是人工智能發展的最好時代,去放手創造些什么吧。開發工具比以往都更加優化,價格更加便宜。
未來25年的科技趨勢可能難以預測,不過有一件事是確定的,那就是我未來25年中,最偉大的產品今天還沒有被發明出來。
也就是說,你沒遲到。